The effect of extraction conditions on polyphenols contents and condensed tannins by microwave-assisted extraction (MAE) was studied for the first time to our knowledge. Moroccan barks of Acacia mollissima was used to extract phenolic compounds. The variables studied are the following: power extraction, time extraction and solvent nature. Five powers extraction were tested: 150 W, 250 W, 300 W, 450 W and 600 W. A significant effect of power extraction on the extractable nature was proved by ANOVA and Student test. The yields were also affected by time extraction. Different solvent (water, ethanol, methanol and ethyl acetate) were tested to evaluate the best extraction solvent according to the extractable nature. Highest polyphenols contents were obtained with methanol. The proportion of this solvent, time extraction and power extraction were optimized using the response surface methodology (RSM). A face-centered composite design (FCCD) was applied to evaluate the effects of these variables on the polyphenols and condensed tannins contents. For each experiment, the extraction yield, the total polyphenolic contents and
Abstract. The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.