Fibroblasts are key orchestrators of inflammation. Little is known whether these cells change phenotype during resolution of inflammation. We adopted a method to visualise fibroblast activation during inflammation in humans in vivo, which is based on a fibroblast activation protein (FAP) tracer detected by positron emission tomography (PET). While tracer accumulation was high in active arthritis, it decreased significantly after TNF- and IL-17A inhibition. Biopsy-based scRNA-seq analyses in experimental arthritis demonstrated that FAP signal reduction reflected a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalisation) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalisation). Spatial transcriptomics of human joints revealed that pro-resolving niches of CD200+DKK3+ fibroblasts clustered with innate lymphoid cells (ILC)2, whereas MMP3+/IL6+ fibroblasts were co-localised with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilised the ILC2 phenotype and induced resolution of arthritis via CD200/CD200R1 pathway. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.
In this article, the performance of a radial flow turbine is determined in the framework of oscillating water column installations (OWC). The studied turbine redesigned and adapted from previous studies to this application, is analyzed in detail using CFD Fluent v16.2 and TurboGrid for mesh preprocessing. In particular, a 3D numerical model with high-quality hexahedral meshes (necessary to analyze the unsteady phenomena in the blade passages of the turbine) has been developed to obtain an enhanced prediction of the flow patterns. The results obtained through a full unsteady RANS resolution of the viscous and three-dimensional flow structures reveal the optimal performance of the radial turbine and confirm the expected improvements introduced during the redesign of the machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.