An automated solution to horizontal vs. vertical elasticity problem is central to make cloud autoscalers truly autonomous. Today's cloud autoscalers are typically varying the capacity allocated by increasing and decreasing the number of virtual machines (VMs) of a predefined size (horizontal elasticity), not taking into account that as load varies it may be advantageous not only to vary the number but also the size of VMs (vertical elasticity). We analyze the price/performance effects achieved by different strategies for selecting VM-sizes for handling increasing load and we propose a cost-benefit based approach to determine when to (partly) replace a current set of VMs with a different set. We evaluate our repacking approach in combination with different auto-scaling strategies. Our results show a range of 7% up to 60% cost saving in total resource utilization cost of our sample applications and workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.