Background: Conserved Asp-137 destabilizes the hydrophobic core of the coiled-coil tropomyosin. Results: Leu substitution of Asp-137 decreases flexibility of tropomyosin and causes long range structural rearrangements; mouse hearts expressing this variant show altered function. Conclusion: Residue Asp-137 is important for regulatory function of tropomyosin in the heart. Significance: Our data support the hypothesis that tropomyosin flexibility regulates cardiac function in vivo.
In muscle thin filaments, the inhibitory region (residues 96-117) of troponin I (TnI) is thought to interact with troponin C (TnC) in the presence of Ca(2+) and with actin in the absence of Ca(2+). To better understand these interactions, we prepared mutant TnIs which contained a single Cys-96 or Cys-117 and labeled them with the thiol-specific fluorescent probe N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS). We characterized the microenvironments of the AEDANS labels on TnI in the presence and absence of Ca(2+) by measuring the extent of acrylamide quenching of fluorescence and lifetime-resolved anisotropy. In the troponin-tropomyosin (Tn-Tm) complex, the AEDANS labels on both Cys-96 and Cys-117 were less accessible to solvent and less flexible in the presence of Ca(2+), reflecting closer interactions with TnC under these conditions. In reconstituted thin filaments, the environment of the AEDANS on Cys-96 was not greatly affected by Ca(2+), while the AEDANS on Cys-117 was more accessible but significantly less flexible as it moved away from actin and interacted strongly with TnC in the presence of Ca(2+). We used fluorescence resonance energy transfer (FRET) to measure distances between AEDANS on TnI Cys-96 or Cys-117 and 4-¿[(dimethylamino)phenyl]azo¿phenyl-4'-maleimide (DABmal) on actin Cys-374 in reconstituted thin filaments. In the absence of Ca(2+), the mean distances were 40.2 A for Cys-96 and 35.2 A for Cys-117. In the presence of Ca(2+), Cys-96 moved away from actin Cys-374 by approximately 3.6 A, while Cys-117 moved away by approximately 8 A. This suggests the existence of a flexible "hinge" region near the middle of TnI, allowing amino acid residues in the N-terminal half of TnI to interact with TnC in a Ca(2+)-independent manner, while the C-terminal half of TnI binds to actin in the absence of Ca(2+) or to TnC in the presence of Ca(2+). This is the first report to demonstrate structural movement of the inhibitory region of TnI in the thin filament.
Lipids are well recognized ligands that bind to proteins in a specific manner and regulate their function. Most attention has been placed on the headgroup of phospholipids, and little is known about the role of the acyl chains in mediating any effects of lipids on proteins. In this report, free fatty acids (FFA) were found to bind and activate phospholipase C delta1(PLC delta1). The unsaturated FFA arachidonic acid (AA) and oleic acid were able to stimulate PLC delta1 up to 30-fold in a dose-dependent manner. The saturated FFA stearic acid and palmitic acid were less efficacious than unsaturated FFA, activating the enzyme up to 8-fold. The mechanism of activation appears to be due to a change in K(m) for substrate; 50 microM arachidonate reduced the K(m) for the soluble PLC substrate diC(4)PI from 1.7 +/- 0.6 mM to 0.24 +/- 0.04 mM (7-fold reduction). V(max) was not significantly altered. PLC delta1 bound to sucrose-loaded vesicles that contained AA in a concentration-dependent manner. A fragment of PLC delta1 that encompasses the EF-hand domain also bound to micelles containing AA using nondenaturing PAGE. This same fragment also inhibited AA activation of PLC delta1 in a competition assay. These results suggest that the function of the EF-hand domain of PLC delta1 is to bind lipid and to allosterically regulate catalysis. These results also suggest that esterified and nonesterified fatty acids can bind to and regulate protein function, identifying a functional role for hydrophobic interactions between lipids and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.