SignificanceHere we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis.
Learned fear and safety are associated with distinct oscillatory states in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). To determine if and how these network states support the retrieval of competing memories, we mimicked endogenous oscillatory activity through optogenetic stimulation of parvalbumin-expressing interneurons in mice during retrieval of contextual fear and extinction memories. We found that exogenously induced 4 Hz and 8 Hz oscillatory activity in the BLA exerts bi-directional control over conditioned freezing behavior in an experience-and context-specific manner, and that these oscillations have an experience-dependent ability to recruit distinct functional neuronal ensembles. At the network level we demonstrate, via simultaneous manipulation of BLA and mPFC, that experience-dependent 4 Hz resonance across BLA-mPFC circuitry supports postextinction fear memory retrieval. Our findings reveal that post-extinction fear memory retrieval is supported by local and interregional experience-dependent resonance, and suggest novel approaches for interrogation and therapeutic manipulation of acquired fear circuitry.
The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinson's disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.
The synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, though SV2C with its restricted basal ganglia distribution has no known function. SV2C is emerging as a potentially relevant protein in Parkinson's disease, as it is a genetic modifier of nicotine neuroprotection and sensitivity to L-DOPA. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of Parkinson's disease (PD). Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fastscan cyclic voltammetry, reduced striatal dopamine content, disrupted alpha-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Further, SV2C expression is dramatically altered in postmortem brain tissue from PD cases, but not in Alzheimer's disease, progressive supranuclear palsy or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a novel mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction Parkinson's disease | synaptic vesicles | dopamine | SV2C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.