BackgroundOverdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, on liver injury induced by APAP overdose in mice.MethodsHepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg). The effects of ozagrel (200 mg/kg) treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT) levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL) on cytochrome P450 2E1 (CYP2E1) activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI), a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM) were evaluated by the WST-1 cell viability assay.ResultsOzagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos) and C/EBP homologous protein (chop), but did not suppress B-cell lymphoma 2-like protein11 (bim) expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16.ConclusionsWe demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest that it is a promising therapeutic candidate for the treatment of APAP-induced liver injury.
This study examined the cytoprotective and anti-oxidative properties of phosphoenolpyruvic acid (PEP), a glycolysis metabolite with a high-energy phosphate group. PEP (0.1-10 mM) significantly attenuated the decrease in cell viability induced by hydrogen peroxide (H 2 O 2 ) in HeLa cells in a dose-dependent manner. PEP also inhibited the decrease in calcein-acetomethoxy-stained cells and the increase in propidium iodidestained cells that were induced by H 2 O 2 . The H 2 O 2 -stimulated increase in intracellular reactive oxygen species was significantly reduced by PEP. PEP also demonstrated scavenging potential against hydroxyl radicals, as assessed by the electron paramagnetic resonance method. In addition, PEP demonstrated scavenging potential against the 1,1-diphenyl-2-picrylhydrazyl radical, a representative artificial radical, although the potential is very weak. PEP (10 mM) slightly inhibited the decrease in cellular ATP content induced by H 2 O 2 , but did not show any effects at low doses (0.1, 1 mM). PEP (0.1-10 mM) also attenuated the cell injury but not the decrease in intracellular ATP content, induced by 2-deoxy-D-glucose, a glycolysis inhibitor. These results indicate that PEP exerts cytoprotective effects and has anti-oxidative potential, although the precise cytoprotective mechanisms are not fully elucidated. We suggest that PEP is a functional carbohydrate metabolite with cytoprotective and anti-oxidative activity, and is potentially useful as a therapeutic agent against diseases that involve the oxidative stress.Key words phosphoenolpyruvic acid; anti-oxidant; oxidative stress; cellular injury; hydrogen peroxide Phosphoenolpyruvic acid (PEP) is a high-energy intermediate substance in the glycolytic and gluconeogenic pathways. PEP can penetrate the cell membrane and transfer its highenergy phosphate group to adenosine diphosphate, aiding the replenishment of intracellular ATP.1,2) It has been reported that PEP improved post-ischemic energy status in the heart, 3) skeletal muscle, 4) and liver 1) in rats. Hojo et al. 5) demonstrated that transplanted kidney function and graft survival were improved by PEP in experimental kidney transplantation in a canine model. In addition, we demonstrated that PEP attenuated pulmonary gas exchange dysfunction and pulmonary vascular hyperpermeability in acute lung injury induced by oleic acid in the guinea pig, a model of acute lung injury. 6)These findings indicate that PEP is an attractive prospect as a putative agent that protects cells and organs from damage by improving their energy status. However, the mechanism(s) of its protective effects have not been well defined.Reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) and the hydroxyl radical (·OH) are highly reactive substances that play important roles in some physiological conditions. However, they also contribute to pathophysiological damage as inducers of oxidative stress.7-10) Oxidative stress seems to be a potent factor in the development of organ ischemia/reperfusion injuries 11) a...
Acetaminophen, a common analgesic/antipyretic, is a frequent cause of acute liver failure in Western countries. The development of an effective cure against acetaminophen hepatotoxicity is crucial. Ethyl pyruvate, an ethyl ester derivative of pyruvic acid, has been identified as a possible candidate against acetaminophen hepatotoxicity in animal experiments. However, the mode of the hepatoprotective action of ethyl pyruvate remains unclear. We examined the hepatoprotective effect of ethyl pyruvate against hepatocyte injury and oxidative stress in a mouse model of acetaminophen hepatotoxicity. In addition, to examine whether ethyl pyruvate has direct hepatocellular protection against acetaminophen hepatotoxicity to counteract the influence of inflammatory cells, such as macrophages, we examined the effects of ethyl pyruvate on cellular injury induced by N-acetyl-p-benzoquinone imine, a toxic metabolite of acetaminophen, in a human hepatocyte cell line, HepG2 cells. Treatment with ethyl pyruvate significantly prevented increases in serum transaminase levels and hepatic centrilobular necrosis induced with an acetaminophen overdose in mice in a dose-dependent manner. Although hepatic DNA fragmentation induced by acetaminophen was also attenuated with ethyl pyruvate, nitrotyrosine formation was not inhibited. Ehyl pyruvate significantly attenuated mitochondria dehydrogenase inactivity induced by N-acetyl-p-benzoquinone imine in HepG2 cells. The attenuating effect was also observed in a rat hepatocyte cell line. Increases in annexin V and propidium iodide-stained cells induced by N-acetyl-p-benzoquinone imine were prevented with ethyl pyruvate in HepG2 cells. Pyruvic acid, a parent compound of ethyl pyruvate, tended to attenuate these changes. The results indicate that ethyl pyruvate has direct hepatocellular protection against N-acetyl-p-benzoquinone imine induced injury observed in acetaminophen overdose. The in vivo and in vitro results suggest that ethyl pyruvate attenuates acetaminophen-induced liver injury via, at least in part, its cellular protective potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.