Photo-chemical deamination of cytosine using 3-cyanovinylcarbazole nucleoside (K) mediated photo-cross-linking is a technique for site-directed mutagenesis. Using this technique in vivo requires the elimination of a high-temperature incubation step; instead, incubation should be carried out under physiological conditions. To improve the reactivity of K mediated photo-cross-link induced deamination of cytosine under physiological conditions, an evaluation of base pairing in cytosine was carried out with respect to its deamination. Guanine was replaced with 4 different counter bases (inosine, 2-aminopurine, 5-nitroindole, and nebularine), showing distinct hydrogen bonding patterns with target cytosine, which was incorporated at the -1 position with respect toK in the K-modified photo-responsive oligodeoxyribonucleotides to ascertain the role of hydrogen bonding in deamination under physiological conditions. Among the counter bases, inosine showed the highest acceleration towards the photo-induced deamination reaction.
To evaluate the effect of base pairing of the target pyrimidine on the interstrand photo-cross-linking reaction of DNA via 3-cyanovinylcarbazole nucleoside ((CNV)K), a complementary base of target pyrimidine was substituted with noncanonical purine bases or 1,3-propandiol (S). As the decrease of the hydrogen bonds in the base pairing of target C accelerated the photo-cross-linking reaction markedly (3.6- to 7.7-fold), it can be concluded that the number of hydrogen bonds in the base pairing, i.e., the stability of base pairing, of the target pyrimidine plays a critical role in the interstrand photo-cross-linking reaction. In the case of G to S substitution, the highest photoreactivity toward C was observed, whose photoreaction rate constant (k = 2.0 s(-1)) is comparable to that of (CNV)K toward T paired with A (k = 3.5 s(-1)). This is the most reactive photo-cross-linking reaction toward C in the sequence specific interstrand photo-cross-linking. This might facilitate the design of the photo-cross-linkable oligodeoxyribonucleotides for various target sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.