Background: Macular hole (MH) is a retinal break in the fovea involving partial or complete dehiscence of the neural retinal layers affecting the visual quality by decreasing visual acuity (VA) and visual deformation. We describe a case of secondary MH associated with submacular hemorrhage (SMH) due to polypoidal choroidal vasculopathy (PCV), which showed spontaneous closure. Case presentation: A 67-year-old man developed decreased VA in his right eye due to an SMH. The VA was 20/50, and monthly intravitreal injection of aflibercept was administered three times. The SMH gradually decreased, and 10 months later the external limiting membrane was found to be perforated, resulting in MH. The old clot disappeared, and the MH remained for 10 months. Twenty-three months later, serous retinal detachment (SRD) involving the macula appeared and the MH had disappeared. SRD gradually disappeared, and macular configuration recovered. VA gradually improved and became 20/20 38 months later. Conclusion: Dynamic change of the ultrastructure in an unusual case of secondary-developed and spontaneously closed MH was clearly observed. Although the mechanism was unknown, the small diameter size and exudative PCV are thought to have contributed to the closure.
Purpose
To evaluate the correlation between macular retinal function and the changes in the macular retinal vascular structure in glaucomatous eyes.
Methods
The study included patients with glaucoma who visited Saitama Medical University and underwent optical coherence tomography angiography, and multifocal electroretinographic examinations at the same time between February 2020 and April 2021. Correlations among the ocular parameters, macular vessel density, and multifocal electroretinographic parameters were evaluated using a mixed model.
Results
Forty-one eyes (mean deviation, −12.4 ± 7.8 dB) of 24 subjects (mean age, 75.2 ± 8.3 years) were included in the analysis. There were no significant correlations for macular vessel density in the superficial retinal layer. However, macular vessel density in the deep retinal layer showed a significant positive correlation with P1–N1 amplitude (coefficient = 0.724;
P
= 0.001). There were no significant correlations between the optical coherence tomography parameters and any of the multifocal electroretinographic parameters.
Conclusions
A decrease in N1–P1 amplitude was observed in glaucomatous eyes in relation to a reduction in macular vessel density in the deep retinal layer, which suggests that ischemia-induced bipolar cell dysfunction may be involved in the intermediate retinal dysfunction associated with glaucoma.
Translational Relevance
Intermediate retinal dysfunction in glaucoma is related to the changes in deep retinal microvasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.