Four types of zinc (Zn)-doped hydroxyapatite (Zn-HAp) nanoparticles were prepared using calcium nitrate tetrahydrate as an anti-sintering agent during calcination at 600 C for 1 hr, to prevent calcination-induced aggregation. The Zn content of the nanopowders was determined at 0, 4.3, 9.2, and 14.7% [Zn/(Ca + Zn) Â 100] using inductively coupled plasma atomic emission spectroscopic analysis. Based on X-ray diffraction analysis, the products were shown to possess an apatite structure without other crystalline impurities. The cell parameters of Zn-HAp nanoparticles decreased with increasing of Zn content in the HAp structures. This tendency implies that Zn ions substituted for Ca sites in the HAp crystal lattices. To investigate the biological effects of Zn-HAp nanoparticles, cell proliferation activity of MC3T3-E1 osteoblasts and antibacterial activity against Escherichia coli were evaluated in vitro. According to the results obtained, Zn-HAp nanoparticles containing of 14.7% Zn ions was noticeable shown shareability of the conflicting activities at 0.1 mg/mL.
Percutaneous devices—indwelling catheters—related infections are serious clinical incidents. It is accordingly necessary to develop anti-infective coating materials suitable for the devices for long-term effectiveness. In our research group, highly dispersible and crystalline hydroxyapatite (HAp) nanoparticles doped with metallic or halogen ions possessing antibacterial activities have been developed. In this study, antibacterial, dispersible, and crystalline zinc (Zn)-doped hydroxyapatite [Zn(15)-HAp] nanoparticles substituted with 13.5% Zn content [Zn/(Zn + Ca) × 100] were prepared by a wet chemical method using an anti-sintering agent through calcination. Antibacterial activities of Zn(15)-HAp nanoparticles were evaluated using Escherichia coli ( E. coli) and Staphylococcus aureus. The survival rates of the bacteria on Zn(15)-HAp nanoparticles were significantly lower than that on normal HAp (nHAp) coated surfaces, while no influences were observed on proliferation of L929 cells. Even after soaking Zn(15)-HAp nanoparticles in PBS for 2 weeks, the antibacterial activities against E. coli were maintained at a similar level to a 20 min soaking. The bacterial death was related to not only ion-exchange phenomenon between Zn and magnesium ions but also accumulation of reactive oxygen species (ROS) in the cells. Allergic-like reactions—anaphylactoid reactions—might not readily occur with Zn(15)-HAp nanoparticles because the amounts of histamine released from HMC-1 cells co-cultured with nanoparticles were not significantly different to that of nHAp, but were statistically much lower than that of chlorhexidine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.