Aquaculture is the fastest growing animal food production industry, now producing 50% of all food fish. However, aquaculture feeds remain dependent on fishmeal derived from capture fisheries, which must be reduced for continued sustainable growth. Purple phototrophic bacteria (PPB) efficiently yield biomass from wastewater with high product homogeneity, a relatively high protein fraction, and potential added value as an ingredient for fish feeds. Here we test bulk replacement of fishmeal with PPB microbial biomass in diets for Asian sea bass ( Lates calcarifer ), a high value carnivorous fish with high protein to energy requirement. Mixed culture PPB were grown in a novel 1 m 3 attached photo-biofilm process using synthetic and real wastewater. Four experimental diets were formulated to commercial specifications but with the fishmeal substituted (0%, 33%, 66%, and 100%) with the synthetic grown PPB biomass and fed to a cohort of 540 juvenile fish divided amongst 12 tanks over 47 days. Weight and standard length were taken from individual fish at 18, 28, and 47d. No significant difference in survival was observed due to diet or other factors (94–100%). There was a negative correlation between PPB inclusion level and final weight ( p = 5.94 × 10 −5 ) with diet accounting for 4.1% of the variance over the trial (general linear model, R 2 = 0.96, p = 1 × 10 −6 ). Feed conversion ratio was also significantly influenced by diet ( p = 6 × 10 −7 ) with this factor accounting for 89% of variance. Specifically, feed conversion ratio (FCR) rose to 1.5 for the 100% replacement diet during the last sample period, approximately 1.0 for the partial replacement, and 0.8 for the nil replacement diet. However, this study demonstrates that bulk replacement of fishmeal by PPB is feasible, and commercially viable at 33% and 66% replacement.
(group B [GBS]) causes disease in a wide range of animals. The serotype Ib lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial conspecifics. Here, we sequence genomes from 40 GBS isolates, including 25 isolates from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras, and compared them with 42 genomes from public databases. Phylogenetic analysis based on nonrecombinant core-genome single nucleotide polymorphisms (SNPs) indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core-genome SNPs indicates the dissemination of sequence type 261 (ST-261) from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pangenome analysis identified 1,440 genes as core, with the majority being dispensable or strain specific, with non-protein-coding intergenic regions (IGRs) divided among core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and for targets in vaccine development. The close relationship among recent ST-261 isolates from Ghana, the United States, and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS. (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts, and serotype Ib is highly specialized to fish. Here, we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report here the variability in the polysaccharide capsule among this lineage but identify a cohort of common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade.
Streptococcus agalactiae (GBS) causes disease in a wide range of animals. The serotype 1b lineage is highly adapted to aquatic hosts, exhibiting substantial genome reduction compared with terrestrial con-specifics. Here we sequence genomes from 40 GBS isolates including 25 from wild fish and captive stingrays in Australia, six local veterinary or human clinical isolates, and nine isolates from farmed tilapia in Honduras and compare with 42 genomes from public databases. Phylogenetic analysis based on non-recombinant core genome SNPs indicated that aquatic serotype Ib isolates from Queensland were distantly related to local veterinary and human clinical isolates. In contrast, Australian aquatic isolates are most closely related to a tilapia isolate from Israel, differing by only 63 core-genome SNPs. A consensus minimum spanning tree based on core genome SNPs indicates dissemination of ST-261 from an ancestral tilapia strain, which is congruent with several introductions of tilapia into Australia from Israel during the 1970s and 1980s. Pan-genome analysis identified 1,440 genes as core with the majority being dispensable or strain-specific with non-protein-coding intergenic regions (IGRs) divided amongst core and strain-specific genes. Aquatic serotype Ib strains have lost many virulence factors during adaptation, but six adhesins were well conserved across the aquatic isolates and might be critical for virulence in fish and targets for vaccine development. The close relationship amongst recent ST-261 isolates from Ghana, USA and China with the Israeli tilapia isolate from 1988 implicates the global trade in tilapia seed for aquaculture in the widespread dissemination of serotype Ib fish-adapted GBS.ImportanceStreptococcus agalactiae (GBS) is a significant pathogen of humans and animals. Some lineages have become adapted to particular hosts and serotype Ib is highly specialized to fish. Here we show that this lineage is likely to have been distributed widely by the global trade in tilapia for aquaculture, with probable introduction into Australia in the 1970s and subsequent dissemination in wild fish populations. We report variability in the polysaccharide capsule amongst this lineage, but identify a cohort common surface proteins that may be a focus of future vaccine development to reduce the biosecurity risk in international fish trade.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.