Genetic diversity underpins the ability of populations to persist and adapt to environmental changes. Substantial empirical data show that genetic diversity rapidly deteriorates in small and isolated populations due to genetic drift, leading to reduction in adaptive potential and fitness and increase in inbreeding. Assisted gene flow (e.g. via translocations) can reverse these trends, but lack of data on fitness loss and fear of impairing population “uniqueness” often prevents managers from acting. Here, we use population genetic and riverscape genetic analyses and simulations to explore the consequences of extensive habitat loss and fragmentation on population genetic diversity and future population trajectories of an endangered Australian freshwater fish, Macquarie perch Macquaria australasica. Using guidelines to assess the risk of outbreeding depression under admixture, we develop recommendations for population management, identify populations requiring genetic rescue and/or genetic restoration and potential donor sources. We found that most remaining populations of Macquarie perch have low genetic diversity, and effective population sizes below the threshold required to retain adaptive potential. Our simulations showed that under management inaction, smaller populations of Macquarie perch will face inbreeding depression within a few decades, but regular small‐scale translocations will rapidly rescue populations from inbreeding depression and increase adaptive potential through genetic restoration. Despite the lack of data on fitness loss, based on our genetic data for Macquarie perch populations, simulations and empirical results from other systems, we recommend regular and frequent translocations among remnant populations within catchments. These translocations will emulate the effect of historical gene flow and improve population persistence through decrease in demographic and genetic stochasticity. Increasing population genetic connectivity within each catchment will help to maintain large effective population sizes and maximize species adaptive potential. The approach proposed here could be readily applicable to genetic management of other threatened species to improve their adaptive potential.
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next-generation sequencing technology.
Whilst adaptation and phenotypic plasticity might buffer species against habitat degradation associated with global climate change, few studies making such claims also possess the necessary and sufficient data to support them. Doing so requires demonstration of heritable variation in traits affecting fitness under new environmental conditions. We address this issue using an emerging aquatic system to study adaptation to climate change, the crimson‐spotted rainbowfish (Melanotaenia duboulayi), a freshwater species from a region of eastern Australia projected to be affected by marked temperature increases. Captive born M. duboulayi of known pedigree were used to assess the long‐term effects of contemporary and 2070‐projected summer temperatures on the expression of genes previously identified in a climate change transcriptomics (RNA‐Seq) experiment. Nearly all genes responded to increasing temperature. Significant additive genetic variance explained a moderate proportion of transcriptional variation for all genes. Most genes also showed broad‐sense genetic variation in transcriptional plasticity. Additionally, molecular pathways of candidate genes co‐occur with genes inferred to be under climate‐mediated selection in wild M. duboulayi populations. Together, these results indicate the presence of existing variation in important physiological traits, and the potential for adaptive responses to a changing thermal environment.
Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45–120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (FST = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.
The ecological impacts of increasing global temperatures are evident in most ecosystems on Earth, but our understanding of how climatic variation influences natural selection and adaptive resilience across latitudes remains largely unknown. Latitudinal gradients allow testing general ecosystem‐level theories relevant to climatic adaptation. We assessed differences in adaptive diversity of populations along a latitudinal region spanning highly variable temperate to subtropical climates. We generated and integrated information from environmental mapping, phenotypic variation and genome‐wide data from across the geographical range of the rainbowfish Melanotaenia duboulayi, an emerging aquatic system for studies of climate change. We detected, after controlling for spatial population structure, strong interactions between genotypes and environment associated with variation in stream flow and temperature. Some of these hydroclimate‐associated genes were found to interact within functional protein networks that contain genes of adaptive significance for projected future climates in rainbowfish. Hydroclimatic selection was also associated with variation in phenotypic traits, including traits known to affect fitness of rainbowfish exposed to different flow environments. Consistent with predictions from the “climatic variability hypothesis,” populations exposed to extremes of important environmental variables showed stronger adaptive divergence and less variation in climate‐associated genes compared to populations at the centre of the environmental gradient. Our findings suggest that populations that evolved at environmental range margins and at geographical range edges may be more vulnerable to changing climates, a finding with implications for predicting adaptive resilience and managing biodiversity under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.