Spatiotemporal modulation of microtubules by light has become an important aspect of the biological and nanotechnological applications of microtubules. We previously developed a Tau‐derived peptide as a binding unit to the inside of microtubules. Here, we conjugated the Tau‐derived peptide to spiropyran, which is reversibly converted to merocyanine by light, as a reversible photocontrol system to stabilize microtubules. Among the synthesized peptides with spiropyran/merocyanine at different positions, several peptides were bound to the inside of microtubules and stabilized the structures of microtubules. The peptide with spiropyran at the N‐terminus induced polymerization and stabilization of microtubules, whereas the same peptide with the merocyanine form did not exert these effects. Reversible formation of microtubules/tubulin aggregates was achieved using the peptide with spiropyran conjugated at the N‐terminus and irradiation with UV and visible light. Spiropyran‐conjugated Tau‐derived peptides would be useful for spatiotemporal modulation of microtubule stability through reversible photocontrol of binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.