Brain-computer interface (BCI) is an important alternative for disabled people that enables the innovative communication pathway among individual thoughts and different assistive appliances. In order to make an efficient BCI system, different physiological signals from the brain have been utilized for instances, steady-state visual evoked potential, motor imagery, P300, movement-related potential and error-related potential. Among these physiological signals, motor imagery is widely used in almost all BCI applications. In this paper, Electrocorticography (ECoG) based motor imagery signal has been classified using long short-term memory (LSTM). ECoG based motor imagery data has been taken from BCI competition III, dataset I. The proposed LSTM approach has achieved the classification accuracy of 99.64%, which is the utmost accuracy in comparison with other state-of-art methods that have employed the same data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.