In this study, element-quality-based stiffening (EQBS) was developed as a method of maintaining mesh quality in the pseudoelastic mesh-moving technique. The proposed EQBS technique increases the stiffness of the element based on two element quality parameters, the element area and shape; this differs from techniques used in previous studies. Importantly, EQBS includes the previously proposed Jacobian-based stiffening (JBS) and minimum height-based stiffening (MHBS) techniques as a specific case. Therefore, it is quite general scenario of the selective stiffening of the mesh. The proposed EQBS technique was applied to the mesh-moving of a rectangular domain including a structure consisting of a square and a fin that undergo large translations and rotations. The proposed EQBS technique showed better performance than JBS on test problems with large translations and rotations applied to the structure. This is because EQBS considers the shear deformation of the element in addition to the tensile and compressive deformations.
In insect flapping wings, the camber deformation is caused by the aerodynamic forces. Since the camber will improve the aerodynamic performance of Flapping Wing Nano Air Vehicles (FWNAVs), it is important to elucidate the passive mechanism of the cambering. The pixel wing model consisting of a structured mesh using shell elements that can simulate the camber deformation caused by the fluid-structure interaction has been proposed for the purpose of computational efficiency. In this study, the performance of the pixel wing model is evaluated as the pixel model resolution is changed. The minimum pixel model resolution is determined such that it can keep enough magnitude of camber compared to actual insects. Furthermore, it is found that the cambering of the pixel wing model can be effectively changed using the wing's chord-wise flexural stiffness given by the root vein pixels and the thickness of the wing membrane pixels.
This study proposed a partitioned method to analyze maneuvering of insects during flapping flight. This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary conditions imposed on the wing's base using one-way coupling. In the wing subsystem, the strong coupling of the flexible wings and surrounding fluid was accurately analyzed using the finite element method to obtain the thrust forces acting on the insect's body. The resulting thrust forces were passed from the wing subsystem to the body subsystem, and then rigid body motion was analyzed in the body subsystem. The rolling, yawing, and pitching motions were simulated using the proposed method as follows: In the rolling simulation, the difference of the stroke angle between the right and left wings caused a roll torque. In the yawing simulation, the initial feathering angle in the right wing only caused a yaw torque. In the pitching simulation, the difference between the front-and backstroke angles in both the right and left wings caused a pitch torque. All three torques generated maneuvering motion comparable with that obtained in actual observations of insect flight. These results demonstrate that the proposed method can adequately simulate the fundamental maneuvers of insect flapping flight. In the present simulations, the maneuvering mechanisms were investigated at the governing equation level, which might be difficult using other approaches. Therefore, the proposed method will contribute to revealing the underlying insect flight mechanisms.
The selective mesh stiffening in this study changes the stiffness of the element based on both the element area and shape. It includes the stiffening in the previous studies as a specific case, and leads to a general scenario in the pseudoelastic mesh-moving. This scenario gives better mesh quality in the mesh-moving of a rectangular domain with a structure consisting of a square and a fin undergoes large rotations. This is because the shear deformation of the element is adaptively considered.Keywords: Finite element method, Pseudoelastic mesh-moving, Interface tracking sisting of a square and a fin that undergoes large deformation [3,4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.