BackgroundResearchers in systems biology use network visualization to summarize the results of their analysis. Such networks often include unconnected components, which popular network alignment algorithms place arbitrarily with respect to the rest of the network. This can lead to misinterpretations due to the proximity of otherwise unrelated elements.ResultsWe propose a new network layout optimization technique called FragViz which can incorporate additional information on relations between unconnected network components. It uses a two-step approach by first arranging the nodes within each of the components and then placing the components so that their proximity in the network corresponds to their relatedness. In the experimental study with the leukemia gene networks we demonstrate that FragViz can obtain network layouts which are more interpretable and hold additional information that could not be exposed using classical network layout optimization algorithms.ConclusionsNetwork visualization relies on computational techniques for proper placement of objects under consideration. These algorithms need to be fast so that they can be incorporated in responsive interfaces required by the explorative data analysis environments. Our layout optimization technique FragViz meets these requirements and specifically addresses the visualization of fragmented networks, for which standard algorithms do not consider similarities between unconnected components. The experiments confirmed the claims on speed and accuracy of the proposed solution.
In the paper we show that diagnostic classes in cancer gene expression data sets, which most often include thousands of features (genes), may be effectively separated with simple two-dimensional plots such as scatterplot and radviz graph. The principal innovation proposed in the paper is a method called VizRank, which is able to score and identify the best among possibly millions of candidate projections for visualizations. Compared to recently much applied techniques in the field of cancer genomics that include neural networks, support vector machines and various ensemble-based approaches, VizRank is fast and finds visualization models that can be easily examined and interpreted by domain experts. Our experiments on a number of gene expression data sets show that VizRank was always able to find data visualizations with a small number of (two to seven) genes and excellent class separation. In addition to providing grounds for gene expression cancer diagnosis, VizRank and its visualizations also identify small sets of relevant genes, uncover interesting gene interactions and point to outliers and potential misclassifications in cancer data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.