Identifying the mechanisms underlying cognitive development in early life is a critical objective. The expression of insulin‐like growth factor binding protein 2 (IGFBP2) in the hippocampus increases during neonatal development and is associated with learning and memory, but a causal connection has not been established. Here, it is reported that neurons and astrocytes expressing IGFBP2 are distributed throughout the hippocampus. IGFBP2 enhances excitatory inputs onto CA1 pyramidal neurons, facilitating intrinsic excitability and spike transmission, and regulates plasticity at excitatory synapses in a cell‐type specific manner. It facilitates long‐term potentiation (LTP) by enhancing N‐methyl‐d‐aspartate (NMDA) receptor‐dependent excitatory postsynaptic current (EPSC), and enhances neurite proliferation and elongation. Knockout of igfbp2 reduces the numbers of pyramidal cells and interneurons, impairs LTP and cognitive performance, and reduces tonic excitation of pyramidal neurons that are all rescued by IGFBP2. The results provide insight into the requirement for IGFBP2 in cognition in early life.
Background
Osteosarcoma is the third most common cancer in adolescence and the first common primary malignant tumor of bone. The long-term prognosis of osteosarcoma still remains unsatisfactory in the past decades. Therefore, development of novel therapeutic agents which are effective to osteosarcoma and are safe to normal tissue simultaneously is quite essential and urgent.
Methods
Firstly, MTT assay, cell colony formation assay, cell migration and invasion assays were conducted to evaluate the inhibitory effects of imperatorin towards human osteosarcoma cells. RNA-sequence assay and bioinformatic analysis were then performed to filtrate and assume the potential imperatorin-induced cell death route and signaling pathway. Moreover, quantitative real-time PCR assay, western blot assay and rescue experiments were conducted to confirm the assumptions of bioinformatic analysis. Finally, a subcutaneous tumor-transplanted nude mouse model was established and applied to evaluate the internal effect of imperatorin on osteosarcoma by HE and immunohistochemistry staining.
Results
Imperatorin triggered time-dependent and dose-dependent inhibition of tumor growth mainly by inducing autophagy promotion and G0/G1 phase arrest in vitro and in vivo. Besides, imperatorin treatment elevated the expression level of PTEN and p21, down-regulated the phosphorylation of AKT and mTOR. In contrast, the inhibition of PTEN using Bpv (HOpic), a potential and selective inhibitor of PTEN, concurrently rescued imperatorin-induced autophagy promotion, cell cycle arrest and inactivation of PTEN-PI3K-AKT-mTOR/p21 pathway.
Conclusions
This work firstly revealed that imperatorin induced autophagy and cell cycle arrest through PTEN-PI3K-AKT-mTOR/p21 signaling pathway by targeting and up-regulating PTEN in human osteosarcoma cells. Hence, imperatorin is a desirable candidate for clinical treatments of osteosarcoma.
Traditional bone wax has lots of
shortcomings such as the risk
of infection and inflammation and the ability to hinder osteogenesis
that limit its clinical applications. In this study, we designed a
novel biodegradable bone wax with desirable angiogenic and antibacterial
ability and low foreign body reaction by mixing calcium sulfate, poloxamer,
and cupric ions. To evaluate its biocompatibility and angiogenetic
effect in vitro, we cultured human umbilical vein
endothelial cells (HUVECs) with the indicated bone wax to observe
cell viability and vessel-like tubular formation. The bone wax was
then implanted in a critical-sized bone defect rat model for 4 and
8 weeks to successfully stimulate angiogenesis in vivo. Finally, the bone wax extract was incubated with Gram-positive Staphylococcus aureus to confirm its antibacterial
ability. The copper-loaded biodegradable bone wax overcomes the drawbacks
of traditional bone wax and provides a new approach for the treatment
of bone injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.