The self‐organization of organic polymer semiconductors into ordered supramolecular assemblies commensurate with efficient charge transport is achieved by tuning a range of process parameters (e.g., film deposition method (spin vs drop cast), solvent boiling point (low vs high boiling point), polymer‐dielectric interface treatment, and post‐deposition processing (solvent vapor or thermal annealing)). However, these strategies present limitations for large‐scale high‐throughput processing due to associated pre‐ and/or post semiconductor deposition steps. Here, photoinduced anisotropic supramolecular assembly of P3HT chains in solution is demonstrated. UV irradiation provides for enhanced intramolecular ordering of solubilized polymer chains, and thereby effects formation of anisotropic supramolecular polymer assemblies via favorable π–π stacking (intermolecular interaction). Molecular ordering is thus dramatically enhanced with concomitant, enhanced charge transport characteristics of corresponding films. Additional pre‐ and/or post treatments are avoided.
Abstract1D poly(3,4‐ethylenedioxythiophene) (PEDOT) nanomaterials, including ellipsoidal nanoparticles, nanorods, and nanotubes, are fabricated via chemical oxidation polymerization in reverse (water‐in‐oil) microemulsions. The reverse cylindrical micelles are prepared with sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) and aqueous FeCl3 solution in hexane. The morphology of the final products is determined by carefully tuning the degree of oxidation potential at the micelle surface. Notably, the fabrication of gram‐scale amounts of products is possible under optimized synthetic conditions, suggesting that this methodology is appropriate for the large‐scale production of the corresponding nanomaterials. The as‐prepared PEDOT nanomaterials are applied to the precise detection of alcohol vapors. The chemical sensors based on the PEDOT nanomaterials present excellent reversibility and reproducibility in response.
An inverse relationship between mechanical ductility and mobility/molecular ordering in conjugated polymer systems was determined definitively through systematic interrogation of poly(3-hexylthiophene) (P3HT) films with varied degrees of molecular ordering and associated charge transport performance. The dilemma, whereby molecular ordering required for efficient charge transport conclusively undermines the applicability of these materials for stretchable, flexible device applications, was resolved using a polymer blend approach. Specifically, the molecular interactions between dissimilar polymer materials advantageously induced semiconducting polymer ordering into efficient π−π stacked fibrillar networks. Changes in the molecular environment surrounding the conjugated polymer during the elastomer curing process further facilitated development of high mobility networked semiconductor pathways. A processed P3HT: poly(dimethylsiloxane) (PDMS) composite afforded a semiconducting film that exhibits superior ductility and notable mobility versus the single-component polymer semiconductor counterpart.
We demonstrate that supramolecular assembly and subsequent enhancement of charge transport characteristics of conjugated polymers can be facilitated simply by adding small amounts of a more volatile poor solvent, which can hydrogen bond with the majority solvent. Addition of up to 2 vol % acetone to a precursor solution of poly(3-hexylthiophene) (P3HT) in chloroform leads to approximately a 4-fold increase in P3HT field-effect mobility. The improvement is associated with hydrogen bonding interactions between acetone and chloroform which decrease the evaporation rate of the mixed solvent. P3HT is less soluble in the binary solvent than in the more readily vaporized chloroform component, and this characteristic enables the supramolecular assembly of P3HT chains at the nanoscale. Two-dimensional molecular ordering of the polymer film was controlled by varying the quantity of poor solvent added to the precursor solution, and the correlation between field-effect mobility and molecular ordering was investigated. Hansen solubility parameters were used to systematically understand how the solvent mixture enhances the alignment and assembly of polymer chains and influences subsequent thin film properties. The value of the relative energy difference (RED) of the solvent with respect to P3HT increased from less than 1 to more than 1 during film formation, which indicates that the solvent characteristics are initially those of a good solvent but transform into those of a poor dissolution medium. A mechanistic illustration of the molecular ordering process during film formation is postulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.