The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR) sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series) from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.
The proper operation of computing resources in a microprocessor-embedded system plays a key role in reducing computing time. Processing the variable amount of collected data in real-time improves the performance of a microprocessor-embedded system. In this regard, a vehicle’s speed measurement system is no exception. The computing time for evaluating any speed value is expected to be reduced as much as possible. Four computational methods, including cross-correlation, are discussed. An exemplary pair of recorded signals presenting the change in magnetic field magnitude is analyzed. The sample delay values are compared. The results of the evaluated speed and the execution time of the program code are presented for each method based on a dataset of 200 randomly driven vehicles. The results of the performed tests confirm that the cross-correlation-based methods are not always reliable in situations when the sample size is small, i.e., it is a segment of the impulse response caused by a driving vehicle.
Methods for estimating a car’s length are presented in this paper, as well as the results achieved by using a self-designed system equipped with two anisotropic magneto-resistive (AMR) sensors, which were placed on a road lane. The purpose of the research was to compare the lengths of mid-size cars, i.e., family cars (hatchbacks), saloons (sedans), station wagons and SUVs. Four methods were used in the research: a simple threshold based method, a threshold method based on moving average and standard deviation, a two-extreme-peak detection method and a method based on the amplitude and time normalization using linear extrapolation (or interpolation). The results were achieved by analyzing changes in the magnitude and in the absolute z-component of the magnetic field as well. The tests, which were performed in four different Earth directions, show differences in the values of estimated lengths. The magnitude-based results in the case when cars drove from the South to the North direction were even up to 1.2 m higher than the other results achieved using the threshold methods. Smaller differences in lengths were observed when the distances were measured between two extreme peaks in the car magnetic signatures. The results were summarized in tables and the errors of estimated lengths were presented. The maximal errors, related to real lengths, were up to 22%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.