Metal-organic frameworks (MOFs) and MOF-derived materials have recently attracted considerable interest as alternatives to noble-metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C-MOF-C2-900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N-doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO , respectively. Primary Zn-air batteries based on C-MOF-900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h g under 10 mA cm . Rechargeable Zn-air batteries based on C-MOF-C2-900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm ), along with an excellent cycling stability with no increase in polarization even after 120 h - outperform their counterparts based on noble-metal-based air electrodes. The resultant rechargeable Zn-air batteries are used to efficiently power electrochemical water-splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.
Abstract. Real-time, in situ molecular composition measurements of the organic fraction of fine particulate matter (PM2.5) remain challenging, hindering a full understanding of the climate impacts and health effects of PM2.5. In particular, the thermal decomposition and ionization-induced fragmentation affecting current techniques has limited a detailed investigation of secondary organic aerosol (SOA), which typically dominates OA. Here we deploy a novel extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) during winter 2017 in downtown Zurich, Switzerland, which overcomes these limitations, together with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and supporting instrumentation. Positive matrix factorization (PMF) implemented within the Multilinear Engine (ME-2) program was applied to the EESI-TOF-MS data to quantify the primary and secondary contributions to OA. An 11-factor solution was selected as the best representation of the data, including five primary and six secondary factors. Primary factors showed influence from cooking, cigarette smoke, biomass burning (two factors) and a special local unknown event occurred only during two nights. Secondary factors were affected by biomass burning (three factors, distinguished by temperature and/or wind direction), organonitrates, monoterpene oxidation, and undetermined regional processing, in particular the contributions of wood combustion. While the AMS attributed slightly over half the OA mass to SOA but did not identify its source, the EESI-TOF-MS showed that most (>70 %) of the SOA was derived from biomass burning. Together with significant contributions from less aged biomass burning factors identified by both AMS and EESI-TOF-MS, this firmly establishes biomass burning as the single most important contributor to OA mass at this site during winter. High correlation was obtained between EESI-TOF-MS and AMS PMF factors where specific analogues existed, as well as between total signal and POA–SOA apportionment. This suggests the EESI-TOF-MS apportionment in the current study can be approximately taken at face value, despite ion-by-ion differences in relative sensitivity. The apportionment of specific ions measured by the EESI-TOF-MS (e.g., levoglucosan, nitrocatechol, and selected organic acids) and utilization of a cluster analysis-based approach to identify key marker ions for the EESI-TOF-MS factors are investigated. The interpretability of the EESI-TOF-MS results and improved source separation relative to the AMS within this pilot campaign validate the EESI-TOF-MS as a promising approach to source apportionment and atmospheric composition research.
Severe events of wintertime particulate air pollution in Beijing (winter haze) are associated with high relative humidity (RH) and fast production of particulate sulfate from the oxidation of sulfur dioxide (SO 2) emitted by coal combustion. There has been considerable debate regarding the mechanism for SO 2 oxidation. Here we show evidence from field observations of a haze event that rapid oxidation of SO 2 by nitrogen dioxide (NO 2) and nitrous acid (HONO) takes place, the latter producing nitrous oxide (N 2 O). Sulfate shifts to larger particle sizes during the event, indicative of fog/cloud processing. Fog and cloud readily form under winter haze conditions, leading to high liquid water contents with high pH (>5.5) from elevated ammonia. Such conditions enable fast aqueous-phase oxidation of SO 2 by NO 2 , producing HONO which can in turn oxidize SO 2 to yield N 2 O.This mechanism could provide an explanation for sulfate formation under some winter haze conditions.
Secondary organic aerosol (SOA) produced by atmospheric oxidation of primary emitted precursors is a major contributor to fine particulate matter (PM2.5) air pollution worldwide. Observations during winter haze pollution episodes in urban China show that most of this SOA originates from fossil-fuel combustion but the chemical mechanisms involved are unclear. Here we report field observations in a Beijing winter haze event that reveal fast aqueous-phase conversion of fossil-fuel primary organic aerosol (POA) to SOA at high relative humidity. Analyses of aerosol mass spectra and elemental ratios indicate that ring-breaking oxidation of POA aromatic species, leading to functionalization as carbonyls and carboxylic acids, may serve as the dominant mechanism for this SOA formation. A POA origin for SOA could explain why SOA has been decreasing over the 2013–2018 period in response to POA emission controls even as emissions of volatile organic compounds (VOCs) have remained flat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.