Although low antituberculosis drug concentrations did not translate to a high proportion of patients with treatment failure, the association between low concentrations of rifampicin and isoniazid and delayed culture conversion may have implications for tuberculosis transmission. Clinical Trials Registration: NCT01782950.
Sulfadoxine/pyrimethamine is recommended for intermittent preventative treatment of malaria during pregnancy. Data from 98 women during pregnancy and 77 after delivery in four African countries were analyzed using nonlinear mixed‐effects modeling to characterize the effects of pregnancy, postpartum duration, and other covariates such as body weight and hematocrit on sulfadoxine/pyrimethamine pharmacokinetic properties. During pregnancy, clearance increased 3‐fold for sulfadoxine but decreased by 18% for pyrimethamine. Postpartum sulfadoxine clearance decreased gradually over 13 weeks. This finding, together with hematocrit‐based scaling of plasma to whole‐blood concentrations and allometric scaling of pharmacokinetics parameters with body weight, enabled site‐specific differences in the pharmacokinetic profiles to be reduced significantly but not eliminated. Further research is necessary to explain residual site‐specific differences and elucidate whether dose‐optimization, to address the 3‐fold increase in clearance of sulfadoxine in pregnant women, is necessary, viable, and safe with the current fixed dose combination of sulfadoxine/pyrimethamine.
Sulfadoxine-pyrimethamine with amodiaquine is recommended by the World Health Organization as seasonal malaria chemoprevention for children aged 3 to 59 months in the sub-Sahel regions of Africa. Suboptimal dosing in children may lead to treatment failure and increased resistance. Pooled individual patient data from four previously published trials on the pharmacokinetics of sulfadoxine and pyrimethamine in 415 pediatric and 386 adult patients were analyzed using nonlinear mixed-effects modeling to evaluate the current dosing regimen and, if needed, to propose an optimized dosing regimen for children under 5 years of age. The population pharmacokinetics of sulfadoxine and pyrimethamine were both best described by a one-compartment disposition model with first-order absorption and elimination. Body weight, age, and nutritional status (measured as the weight-for-age Z-score) were found to be significant covariates. Allometric scaling with total body weight and the maturation of clearance in children by postgestational age improved the model fit. Underweight-for-age children were found to have 15.3% and 26.7% lower bioavailabilities of sulfadoxine and pyrimethamine, respectively, for each Z-score unit below −2. Under current dosing recommendations, simulation predicted that the median day 7 concentration was below the 25th percentile for a typical adult patient (50 kg) for sulfadoxine for patients in the weight bands of 8 to 9, 19 to 24, 46 to 49, and 74 to 79 kg and for pyrimethamine for patients in the weight bands of 8 to 9, 14 to 24, and 42 to 49 kg. An evidence-based dosing regimen was constructed that would achieve sulfadoxine and pyrimethamine exposures in young children and underweight-for-age young children that were similar to those currently seen in a typical adult.
Lopinavir-ritonavir forms the backbone of current first-line antiretroviral regimens in young HIV-infected children. As multidrug-resistant (MDR) tuberculosis (TB) frequently occurs in young children in high-burden TB settings, it is important to identify potential interactions between MDR-TB treatment and lopinavir-ritonavir. We describe the pharmacokinetics of and potential drug-drug interactions between lopinavir-ritonavir and drugs routinely used for MDR-TB treatment in HIV-infected children. A combined population pharmacokinetic model was developed to jointly describe the pharmacokinetics of lopinavir and ritonavir in 32 HIV-infected children (16 with MDR-TB receiving treatment with combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, a fluoroquinolone, and amikacin and 16 without TB) who were established on a lopinavir-ritonavir-containing antiretroviral regimen. One-compartment models with first-order absorption and elimination for both lopinavir and ritonavir were combined into an integrated model. The dynamic inhibitory effect of the ritonavir concentration on lopinavir clearance was described using a maximum inhibition model. Even after adjustment for the effect of body weight with allometric scaling, a large variability in lopinavir and ritonavir exposure, together with strong correlations between the pharmacokinetic parameters of lopinavir and ritonavir, was detected. MDR-TB treatment did not have a significant effect on the bioavailability, clearance, or absorption rate constants of lopinavir or ritonavir. Most children (81% of children with MDR-TB, 88% of controls) achieved therapeutic lopinavir trough concentrations (>1 mg/liter). The coadministration of lopinavir-ritonavir with drugs routinely used for the treatment of MDR-TB was found to have no significant effect on the key pharmacokinetic parameters of lopinavir or ritonavir. These findings should be considered in the context of the large interpatient variability found in the present study and the study's modest sample size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.