Axonal outgrowth is a coordinated process of cytoskeletal dynamics and membrane trafficking; however, little is known about proteins responsible for regulating the membrane supply. LMTK1 (lemur kinase 1)/AATYK1 (apoptosis-associated tyrosine kinase 1) is a serine/ threonine kinase that is highly expressed in neurons. We recently reported that LMTK1 plays a role in recycling endosomal trafficking in CHO-K1 cells. Here we explore the role of LMTK1 in axonal outgrowth and its regulation by Cdk5 using mouse brain cortical neurons. LMTK1 was expressed and was phosphorylated at Ser34, the Cdk5 phosphorylation site, at the time of axonal outgrowth in culture and colocalized with Rab11A, the small GTPase that regulates recycling endosome traffic, at the perinuclear region and in the axon. Overexpression of the unphosphorylated mutant LMTK1-S34A dramatically promoted axonal outgrowth in cultured neurons. Enhanced axonal outgrowth was diminished by the inactivation of Rab11A, placing LMTK1 upstream of Rab11A. Unexpectedly, the downregulation of LMTK1 by knockdown or gene targeting also significantly enhanced axonal elongation. Rab11A-positive vesicles were transported anterogradely more quickly in the axons of LMTK1-deficient neurons than in those of wild-type neurons. The enhanced axonal outgrowth was reversed by LMTK1-WT or the LMTK1-S34D mutant, which mimics the phosphorylated state, but not by LMTK1-S34A. Thus, LMTK1 can negatively control axonal outgrowth by regulating Rab11A activity in a Cdk5-dependent manner, and Cdk5-LMTK1-Rab11 is a novel signaling pathway involved in axonal outgrowth.
The cerebellar Purkinje cell has been the focus of numerous studies involving the analysis of development and information processing in the nervous system. Purkinje cells represent less than 0.1% of the total cell content of the cerebellum. To facilitate studies of molecules that are expressed in such a small proportion of neurons, we have established procedures for the purification of these cells. Transgenic mice were developed in which the expression of green fluorescent protein (GFP) was controlled by the L7 promoter. In adult cerebellum, GFP fluorescence was only detected in Purkinje cells, where it filled dendrites, soma and axons. GFP fluorescence was detected in Purkinje cells as early as embryonic day 17 and increased during development in vivo and in dissociated cerebellar culture. Mirroring endogenous L7 expression, high levels of GFP were observed in retinal rod bipolar cells. Lower levels of GFP were seen in olfactory periglomerular cells, neurons in the interpeduncular nucleus, and superior colliculus neurons. Cerebella from transgenic mice were dissociated by mild enzymatic treatment and Purkinje cells were isolated by fluorescence-activated cell sorting (FACS). By selecting optimal parameters, a fraction of viable Purkinje cells that was 94% pure was obtained. These results indicate that FACS is a powerful tool for isolating Purkinje cells from postnatal L7-GFP transgenic mice. GFP-positive neurons will also be useful in the real-time observation of dendritic morphogenesis and axonal outgrowth during development, or after neuronal activity in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.