Despite decades of biomedical advances, the colonization of implant devices with bacterial biofilms is still a leading cause of implant failure. Clearly, new strategies and materials that suppress both initial and later stage bacterial colonization are required in this context. Ideal would be the implementation of a bactericidal functionality in the implants that is temporally and spatially triggered in an autonomous fashion at the infection site. Herein, the fabrication and validation of functional titanium-based implants with triggered antibiotic release function afforded via an intelligent polymer coating is reported. In particular, thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) brushes on titanium implants synthesized via a surface-initiated atom transfer radical polymerization with activators regenerated through the electron transfer technique (ARGET ATRP) allows for a controlled and thermally triggered release of the antibiotic levofloxacin at the wound site. Antibiotic loaded brushes are investigated as a function of thickness, loading capacity for antibiotics, and temperature. At temperatures of the infection site >37°C the lower critical solution temperature behavior of the brushes afforded the triggered release. Hence, in addition to the known antifouling effects, the PDEGMA coating ensured enhanced bactericidal effects, as demonstrated in initial in vivo tests with rodents infected with Staphylococcus aureus.
Schematic diagram of mRANKL-MT3 in dual inhibitory effect against RANKL during osteoclastogenesis. The first effect of mRANKL-MT3 is induced to RANKL-LGR4 modulation of the RANKL-NFATc1 signaling cascade by a negative-feedback mechanism, which controls osteoclast activity. The second effect is induced to anti-RANKL generation by mutant RANKL, which inhibits osteoclastogenesis and bone erosion.
Tumors of the prostate or breast are particularly likely to metastasize to the bone, and early diagnosis of metastatic bone tumors is important for designing an effective treatment strategy. Imaging modalities for the detection of bone metastasis are limited, and radiation-based techniques are commonly used. Here, we investigated the efficacy of selective near-infrared (NIR) fluorescence detection of metastatic bone tumors and its role in the detection of bone metastasis in prostate and breast cancer cell lines and in a xenograft mouse model. A targeted NIR fluorophore was used to monitor metastatic bone tumors using a NIR fluorescence imaging system in real time, enabling the diagnosis of bone metastasis in vivo by providing the location of the metastatic bone tumor. The NIR fluorescence imaging technique using targeted NIR contrast agents is a potential tool for the early diagnosis of bone tumors.
Taken together, the results presented herein show that LED irradiation downregulates osteoclastogenesis by reducing ROS production. Therefore, LED irradiation/LLLT might be useful as an alternative, conservative approach to osteoporosis management.
Photomodulation therapy (PBMT) using light-emitting diode (LED) has been proposed as an alternative to conventional osteoporosis therapies. Our aim was to determine the effect of irradiation with a light-emitting diode on receptor activator of NF-κB ligand (RANKL)-mediated differentiation of mouse bone marrow macrophages into osteoclasts and compare it to alendronate treatment. The cells were irradiated with LED at 635±10 nm, 9-cm spot size, 5 mW/cm, and 18 J for 60 min/day in a CO incubator. The differentiation of irradiated and untreated RANKL-stimulated bone marrow macrophages into osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and by molecular methods. These included assessing messenger RNA (mRNA) expression of osteoclastic markers such as TRAP, c-Fos, Atp6v0d2, DC-STAMP, NFATc1, cathepsin K, MMP9 and OSCAR; phosphorylation of various MAPKs, including extracellular signal-regulated kinase ERK1/2, P38, and JNK; NF-κB translocation; and resorption pit formation. Results were compared to those obtained with sodium alendronate. Production of reactive oxygen species was measured by a 2',7'-dihydrodichlorofluorescein diacetate assay. LED irradiation and alendronate inhibited mRNA expression of osteoclast-related genes, such as TRAP, c-Fos, and NFATc1, and reduced the osteoclast activity of RANKL-stimulated bone marrow macrophages. LED irradiation, but not alendronate, also inhibited the production of reactive oxygen species (ROS); phosphorylation of ERK, P38, and IκB; and NF-κB translocation. These findings suggest that LED irradiation downregulates osteoclastogenesis by ROS production; this effect could lead to reduced bone loss and may offer a new therapeutic tool for managing osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.