Rotavirus infection seems to be a multistep process in which the viruses are required to interact with several cell surface molecules to enter the cell. The virus spike protein VP4, which is cleaved by trypsin into two subunits, VP5 and VP8, is involved in some of these interactions. We have previously shown that the neuraminidase-sensitive rotavirus strain RRV initially attaches to a sialic acid-containing cell molecule through the VP8 subunit of VP4 and subsequently interacts with integrin ␣21 through VP5. After these initial contacts, the virus interacts with at least two additional proteins located at the cell surface, the integrin ␣v3 and the heat shock cognate protein Hsc70. In this work, we have shown that rotavirus RRV and its neuraminidase-
Strain superinfection occurs when a second strain infects a host already infected with and having mounted an immune response to a primary strain. The incidence of superinfection with Anaplasma marginale, a tick-borne rickettsial pathogen of domestic and wild ruminants, has been shown to be higher in tropical versus temperate regions. This has been attributed to the higher prevalence of infection, with consequent immunity against primary strains and thus greater selective pressure for superinfection with antigenically distinct strains. However an alternative explanation would be the differences in the transmitting vector, Dermacentor andersoni in the studied temperate regions and Rhipicephalus microplus in the studied tropical regions. To address this question, we examined two tropical populations sharing the same vector, R. microplus, but with significantly different infection prevalence. Using two separate markers, msp1α (one allele per genome) and msp2 (multiple alleles per genome), there were higher levels of multiple strain infections in the high infection prevalence as compared to the low prevalence population. The association of higher strain diversity with infection prevalence supports the hypothesis that high levels of infection prevalence and consequent population immunity is the predominant driver of strain superinfection.
BackgroundCulex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV) detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids.ResultsMosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio) of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected.ConclusionsImportant WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p. quinquefasciatus were also collected and identified. The presence and abundance of these WNV competent vectors is a cause for concern. Understanding the distribution of these vectors can help improve viral surveillance activities and mosquito control efforts in Mexico City.
Immunization of cattle with native MSP1 induces protection against Anaplasma marginale. The native immunogen is composed of a single MSP1a protein and multiple, undefined MSP1b polypeptides. In addition to the originally sequenced gene, designated msp1(F1), we identified three complete msp1 genes in the Florida strain: msp1(F2), msp1(F3), and msp1(F4). Each of these polymorphic genes encodes a structurally unique MSP1b protein, and unique transcripts can be identified during acute A. marginale rickettsemia. The structural polymorphism is clustered in discrete variable regions, and each MSP1b protein results from a unique mosaic of five variable regions. Although each of the MSP1b proteins in the Florida strain contains epitopes recognized by serum antibody induced by protective immunization with the native MSP1 complex, the variable regions also include epitopes expressed by some but not all of the MSP1b proteins. These data support testing recombinant vaccines composed of the multiple antigenically and structurally unique MSP1b proteins combined with MSP1a in order to mimic the efficacy of native MSP1 immunization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.