In order to improve the accuracy of wind power prediction (WPP), we propose a WPP based on multivariate phase space reconstruction (MPSR) and multivariate linear regression (MLR). Firstly, the multivariate time series (TS) are constructed through reasonable selection of wind power and weather factors, which are closely associated with wind power. Secondly, the phase space of the multivariate time series is reconstructed based on the chaos theory and C-C method. Thirdly, an auto regression model for multivariate phase space is created by regarding phase variables as state variables, and the very-short-term wind power is predicted by using a multi-linear regression algorithm. Finally, a parallel algorithm based on map/reduce is presented to improve computing speed. A cloud computing platform, Hadoop consisting of five nodes, is established as a matter of convenience, followed by the prediction of wind power of a wind farm in the Hunan province of China. The experimental results show that the model based on MPSR and MLR is more accurate than both the continuous method and the simple approximation method, and the parallel algorithm based on map/reduce effectively accelerates the computing speed.
The strong coupling between the power grid and communication systems may contribute to failure propagation, which may easily lead to cascading failures or blackouts. In this paper, in order to quantitatively analyse the impact of interdependency on power system vulnerability, we put forward a “degree–electrical degree” independent model of cyber-physical power systems (CPPS), a new type of assortative link, through identifying the important nodes in a power grid based on the proposed index–electrical degree, and coupling them with the nodes in a communication system with a high degree, based on one-to-one correspondence. Using the double-star communication system and the IEEE 118-bus power grid to form an artificial interdependent network, we evaluated and compare the holistic vulnerability of CPPS under random attack and malicious attack, separately based on three kinds of interdependent models: “degree–betweenness”, “degree–electrical degree” and “random link”. The simulation results demonstrated that different link patterns, coupling degrees and attack types all can influence the vulnerability of CPPS. The CPPS with a “degree–electrical degree” interdependent model proposed in this paper presented a higher robustness in the face of random attack, and moreover performed better than the degree–betweenness interdependent model in the face of malicious attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.