BackgroundPrimary pulmonary enteric adenocarcinoma (PEAC) is an extremely rare variant of invasive lung cancer. It is highly heterogeneous while shares some common morphologic and immunohistochemical features with usual pulmonary adenocarcinoma (PAC) and colorectal adenocarcinoma (CRAC), making the differential diagnosis difficult. At present there are only limited studies about distinctive features of primary PEAC and the results are often inconsistent.MethodsWe retrospectively analyzed total 129 primary PEACs and 50 CRACs that were published since 1991 or diagnosed in our centre. Among them eight typical samples of primary PEACs and usual PACs were detected by targeted exome sequencing.ResultsThe combination of CK7+/CDX2+ acquires high sensitivity (71.3%) and specificity (82%) in differential diagnosis of PEACs from CRAC. The primary PEACs harbor a high incidence of KRAS mutation but almost absent of EGFR mutation. Moreover, compared with usual PACs, the primary PEACs have higher nonsynonymous tumor mutation burden and more frequent MMR mutation.ConclusionsThe combination of CK7+/CDX2+ immunostaining and the distinctive genetic signatures, including low incidence of sensitivity genes mutations and high tumor mutation burden, is an important supplementary to the clinical differential diagnosis of primary PEACs. Our findings thus have significant implications for development of individualized treatment strategy in these patients.
Our study provides evidence showing an increased population of Lin(-/low) CD33(+) HLA-DR(-) MDSC in the peripheral blood of HCC patients. Our data also suggest that MMP-13 and COX-2 in PBMC may play a new important role companied with MDSC in HCC patients.
Several clinical trials revealed that estrogen receptor (ER) status had relevance to the response of mammary malignancy to chemotherapy. Autophagy has emerged as an important cellular mechanism of tumor cells in response to anticancer therapy. The aim of this study is to investigate whether gemcitabine induces autophagy, and more importantly, whether such autophagy is functional relevant to the therapeutic effects of gemcitabine in breast cancer cells in relation to the ER status. In our study, autophagy was induced both in ER+ MCF-7 and ER− MDA-MB-231 cells by gemcitabine markedly, while the autophagy plays distinct roles – cytoprotective in ER− MDA-MB-231 and cytotoxic in ER+ MCF-7 cells. Gemcitabine treatment leads to the activation of ERα-ERK-P62 signal pathway in MCF-7 cells which may augment the autophagic degradation, thus results in the excessive activation of autophagy and irreversible autophagic cell death eventually. Inhibition of ERα-ERK-P62 cascades in MCF-7 cells by small interfering RNA or PD98059 impairs the autophagic degradation, and leads to “autophagic switch” – from cytotoxic autophagy to cytoprotection. Moreover, stable overexpression of ERα in the ER− BCap37 breast cancer cell line enhances the gemcitabine-induced autophagy flux and switches the autophagic cytoprotection in ER− BCap37 to cytotoxicity effect in ER+ BCap37 cells. Our study firstly demonstrated that ER status influences gemcitabine efficacy via modulating the autophagy in breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.