Glassy perfluoropolymers have become an exciting materials platform for membrane gas separation as they define the upper bounds for some gas separations, such as He/H 2 , He/CH 4 , and N 2 /CH 4 . However, due to the difficulty in synthesis, only a few glassy perfluoropolymers are commercially available, including Teflon AF and Hyflon AD derived from dioxoles and Cytop derived from dihydrofuran. In this study, two perfluoropolymers based on dioxolanes, poly(perfluoro-2-methylene-1,3-dioxolane) (poly(PFMD)) and poly(perfluoro-2-methylene-4-methyl-1,3-dioxolane) (poly(PFMMD)), were synthesized by radical polymerization and characterized thoroughly for physical properties such as glass transition temperature (T g ), d-spacing between polymer chains, and fractional free volume (FFV). The gas permeability and solubility were determined at 35 °C for a series of pure gases in these perfluorodioxolanes and compared with the commercial perfluoropolymers. Poly(PFMD) and poly(PFMMD) exhibit separation properties of He/H 2 , He/CH 4 , H 2 /CH 4 , H 2 /CO 2 , and N 2 /CH 4 near or above the upper bounds in Robeson's plots, and superior to the commercial perfluoropolymers, despite their similar T g and FFV. The underlying reasons for the superior gas separation properties in these dioxolane-based perfluoropolymers are discussed.
Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membraneelectrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings. In this study, we present a novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2methylene-4-methyl-1,3-dioxolane) (PFMMD) backbone. The novel backbone chemistry induces structural changes in the ionomer, restricting ionomer domain swelling under hydration while disrupting matrix crystallinity. These structural 1 changes slightly reduce proton conductivity while significantly improving gas permeability. The performance implications of this tradeoff are assessed, which reveal the potential for substantial performance improvement by incorporation of highly permeable ionomers as the functional catalyst binder. These results underscore the significance of tailoring material chemistry to specific device requirements, where ionomer chemistry should be rationally designed to match the local transport requirements of the device architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.