The exhaust/return-split configuration is regarded as an important upgrade of traditional under-floor-air-distribution (UFAD) systems due to its higher energy efficiency. Moreover, existing studies are mostly focused on the effect of the return vent height on the performance of an UFAD system under cooling conditions. Knowledge of the performance under heating conditions is sorely lacking. This paper presents a numerical evaluation of the performance characteristics of an UFAD system with six different heights of the return vents in heating operation by comprehensively considering thermal comfort, air quality, and energy consumption. The results show that, in the heating mode, the general thermal comfort (predicted mean vote-predicted percentage dissatisfied (PMV-PPD) values) and indoor air quality indices (mean age of air and volatile organic compounds (VOCs) concentration) were greatly improved and energy consumption was slightly reduced with a lower return vent height. Although these were opposite to the findings of our previous study regarding the performance in cooling mode, an optimal return vent height in terms of the comprehensive all-year performance can be recommended. This method provides insight into the design and optimization of the return vent height of UFAD for space heating and cooling.
: The new configuration of a transcritical CO2 ejector expansion refrigeration cycle combined with a dedicated mechanical subcooling cycle (EMS) is proposed. Three mass ratios of R32/R1234ze(Z) (0.4/0.6, 0.6/0.4, and 0.8/0.2) were selected as the refrigerants of the mechanical subcooling cycle (MS) to further explore the possibility of improving the EMS cycle’s performance. The thermodynamic performances of the new cycle were evaluated using energetic and exergetic methods and compared with those of the transcritical CO2 ejector expansion cycle integrated with a thermoelectric subcooling system (ETS). The results showed that the proposed cycle presents significant advantages over the ETS cycle in terms of the ejector performance and the system energetic and exergetic performances. Taking the EMS cycle using R32/R1234ze(Z) (0.6/0.4) as the MS refrigerant as an example, the improvements in the coefficient of performance and system exergy efficiency were able to reach up to 10.27% and 15.56%, respectively, at an environmental temperature of 35 C and evaporation temperature of −5 C. Additionally, the advantages of the EMS cycle were more pronounced at higher environmental temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.