We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.
High quality factors are essential for vibratory microsensors. Therefore, the vibrating structure of the sensors is often encapsulated in a housing where the air is evacuated for reduced air damping. However, the vacuum is usually low and the quality factor is still mainly determined by the energy losses to the surrounding air molecules. Air damping in low vacuum is usually estimated using the free molecular model proposed by Christian (Christian R 1966 Vacuum 16 175–8). The major drawback of the model is that the effect of the nearby objects (e.g. the electrodes for electrostatic driving) and the dimensions of the plate cannot be considered. Therefore, the damping effect is often significantly underestimated for real structures.This paper proposes a new model for air damping of microstructures in low vacuum. In this model, the damping effect is calculated by using an energy transfer mechanism instead of the momentum transfer mechanism in Christian's model. For an isolated oscillating plate, the calculated quality factor by the model is the same as that by Christian's model. However, for an oscillating plate with a neighboring object, the damping effect by the new model is related to the dimensions of the vibrating plate and the gap between the plate and the nearby object. The quality factors calculated agree with experimental data better than with Christian's model by about an order of magnitude.
We propose and describe a magnetic NanoFabric which provides a route to building reconfigurable spin-based logic circuits compatible with conventional electron-based devices. A distinctive feature of the proposed NanoFabric is that a bit of information is encoded into the phase of the spin wave signal. It makes possible to transmit information without the use of electric current and utilize wave interference for useful logic functionality. The basic elements include voltage-to-spin wave and wave-to-voltage converters, spin waveguides, a modulator, and a magnetoelectric cell. As an example of a magnetoelectric cell, we consider a two-phase piezoelectric-piezomagnetic system, where the spin wave signal modulation is due to the stress-induced anisotropy caused by the applied electric field. The performance of the basic elements is illustrated by experimental data and results of numerical modeling. The combination of the basic elements let us construct magnetic circuits for NOT and Majority logic gates. Logic gates AND, OR, NAND and NOR are shown to be constructed as the combination of NOT and a reconfigurable Majority gates. The examples of computational architectures such as Cellular Automata, Cellular Nonlinear Network and Field Programmable Gate Array are described. The main advantage of the proposed NanoFabric is in the ability to realize 2 logic gates with less number of devices than it required for CMOS-based circuits.Potentially, the area of the elementary reconfigurable Majority gate can be scaled down to 0.1µm 2 . The disadvantages and limitations of the proposed NanoFabric are discussed.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.