A comparative performance study of seven pitch detection algorithms was conducted. A speech data base, consisting of eight utterances spoken by three males, three females, and one child was constructed. Telephone, close talking microphone, and wideband recordings were made of each of the utterances. For each of the utterances in the data base; a "standard" pitch contour was semiautomatically measured using a highly sophisticated interactive pitch detection program. The "standard" pitch contour was then compared with the pitch contour that was obtained from each of the seven programmed pitch detectors. The algorithms used in this study were 1) a center clipping, infinite-peak clipping, modified autocorrelation method
Using geophysical methods, specifically transient electromagnetic
(TEM), for CO 2 monitoring is an effective way to
detect CO 2 diffusion. In this work, a multi-scale
finite-difference time-domain (FDTD) algorithm was established to monitor CO
2 by defining new iterative relations and
approximating boundary conditions, which achieves unification in the time
and space domain. The response curve characteristics of different forms of
CO 2 were acquired by changing the receiver's depth and
position, CO 2 resistivity, scale, and injection stage.
Different models considering a planar, tilted, and large-scale CO
2 bodies, which were established to test the
capacity of TEM monitoring for CO 2 . The TEM response
of injected CO 2 bodies had obvious characteristics and
the response curve had distinguishable differences from background. This
phenomenon could provide reference models for real TEM CO
2 monitoring.
Surface transient electromagnetic (TEM) data with large transmitter loops for deep mineral exploration are often complicated by the non-trivial coupling between extended sources and arbitrarily oriented geological targets. This case study reports a TEM field data set acquired across terranes with strong lateral inhomogeneity, which is responsible for the high inconsistency in TEM data patterns along the survey line, as well as for the negative TEM transients (sign reversal) at some near-central loop stations. 3D forward modeling and inversion, as maturing tools in recent years, offer unique opportunities to extract as much geological information from such data as possible. 3D forward simulations of representative synthetic models found that the phenomenon of sign reversal at some TEM stations is associated with compact conductors enclosed by the transmitter loop and receivers that are in the loop, but off the conductor–a situation that is common in large-loop TEM and can only be explained by 3D models. However, 3D inversion of the field data with a uniform subspace as the initial and reference model fails to converge, another point of evidence that 3D inversions of large-loop TEM data are more likely to be subject to stability issues. Our solution is to warm-start the inversion with the representative model in the forward simulation experiments as the initial model, so the ill-posed 3D inversion can escape from local minima. Finally, the vertical contact structure in our 3D-inversion model is verified by a resistivity cross section of the CSAMT method. Our case study demonstrates the demand and capability of 3D electromagnetic modeling and inversion for high-resolution deep mineral exploration. It also provides an easy-to-follow template for carrying out 3D interpretation for complex geology in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.