In speaker verification, a claimant may produce two or more utterances. In our previous study [1], we proposed to compute the optimal weights for fusing the scores of these utterances based on their score distribution and our prior knowledge about the score statistics estimated from the mean scores of the corresponding client speaker and some pseudo-impostors during enrollment. As the fusion weights depend on the prior scores, in this paper, we propose to adapt the prior scores during verification based on the likelihood of the claimant being an impostor. To this end, a pseudo-imposter GMM score model is created for each speaker. During verification, the claimant's scores are fed to the score model to obtain a likelihood for adapting the prior score. Experimental results based on the GSM-transcoded speech of 150 speakers from the HTIMIT corpus demonstrate that the proposed prior score adaptation approach provides a relative error reduction of 15% when compared with our previous approach where the prior scores are non-adaptive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.