ADP-ribosylation factors (ARFs) are highly conserved ϳ20-kDa guanine nucleotide-binding proteins that enhance the ADP-ribosyltransferase activity of cholera toxin and are believed to participate in vesicular transport in both exocytic and endocytic pathways. Several ARF-like proteins (ARLs) have been cloned from Drosophila, rat, and human; however, the biological functions of ARLs are unknown. We have identified a yeast gene (ARL1) encoding a protein that is structurally related (>60% identical) to human, rat, and Drosophila ARL1. Biochemical analyses of purified recombinant yeast ARL1 (yARL1) protein revealed properties similar to those ARF and ARL1 proteins, including the ability to bind and hydrolyze GTP. Like other ARLs, recombinant yARL1 protein did not stimulate cholera toxin-catalyzed auto-ADP-ribosylation. yARL1 was not recognized by antibodies against mammalian ARLs or yeast ARFs. Anti-yARL1 antibodies did not cross-react with yeast ARFs, but did react with human ARLs. On subcellular fractionation, yARL1, similar to yARF1, was localized to the soluble fraction. The amino terminus of yARL1, like that of ARF, was myristoylated. Unlike Drosophila Arl1, yeast ARL1 was not essential for cell viability. Like rat ARL1, yARL1 might be associated in part with the Golgi complex. However, yARL1 was not required for endoplasmic reticulum-to-Golgi protein transport, and it may offer an opportunity to define an ARL function in another kind of vesicular trafficking, such as the regulated secretory pathway.
The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.
Altered glycosylation is a hallmark of cancer. The core 1 b1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates with advanced tumor stage, metastasis, and poor survival. Enforced expression of C1GALT1 was sufficient to enhance cell proliferation, whereas RNA interferencemediated silencing of C1GALT1 was sufficient to suppress cell proliferation in vitro and in vivo. Notably, C1GALT1 attenuation also suppressed hepatocyte growth factor (HGF)-mediated phosphorylation of the MET kinase in hepatocellular carcinoma cells, whereas enforced expression of C1GALT1 enhanced MET phosphorylation. MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. In support of these results, we found that the expression level of phospho-MET and C1GALT1 were associated in primary hepatocellular carcinoma tissues. Mechanistic investigations showed that MET was decorated with O-glycans, as revealed by binding to Vicia villosa agglutinin and peanut agglutinin. Moreover, C1GALT1 modified the O-glycosylation of MET, enhancing its HGF-induced dimerization and activation. Together, our results indicate that C1GALT1 overexpression in hepatocellular carcinoma activates HGF signaling via modulation of MET O-glycosylation and dimerization, providing new insights into how O-glycosylation drives hepatocellular carcinoma pathogenesis. Cancer Res; 73(17); 5580-90. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.