In binomial group testing, unlike one-at-a-time testing, the test unit consists of a group of individuals, and each group is declared to be defective or nondefective. A defective group is one that is presumed to include one or more defective (e.g., infected, positive) individuals and a nondefective group to contain only nondefective individuals. The usual binomial model considers the individuals being grouped as independent and identically distributed Bernoulli random variables. Under the binomial model and presuming that groups are tested and classified without error, it has been shown that, when the proportion of defective individuals is low, group testing is often preferable to individual testing for identifying infected individuals and for estimating proportions of defectives. We discuss the robustness of group testing for estimating proportions when the underlying assumptions of (i) no testing errors and (ii) independent individuals are violated. To evaluate the effect of these model violations, two dilution-effect models and a serial correlation model are considered. Group testing proved to be quite robust to serial correlation. In the presence of a dilution effect, smaller group sizes should be used, but most of the benefits of group testing can still be realized.
In group testing, the test unit consists of a group of individuals. If the group test is positive, then one or more individuals in the group are assumed to be positive. A group observation in binomial group testing can be, say, the test result (positive or negative) for a pool of blood samples that come from several different individuals. It has been shown that, when the proportion (p) of infected individuals is low, group testing is often preferable to individual testing for identifying infected individuals and for estimating proportions of those infected. We extend the potential applications of group testing to hypothesis-testing problems wherein one wants to test for a relationship between p and a classification or quantitative covariable. Asymptotic relative efficiencies (AREs) of tests based on group testing versus the usual individual testing are obtained. The Pitman ARE strongly favors group testing in many cases. Small-sample results from simulation studies are given and are consistent with the large-sample (asymptotic) findings. We illustrate the potential advantages of group testing in hypothesis testing using HIV-1 seroprevalence data.
Under the Basel II and Basel III agreements, the probability of default (PD) is a key parameter used in calculating expected credit loss (ECL), which is typically defined as: PD × Loss Given Default × Exposure at Default. In practice or in regulatory requirements, gross domestic product (GDP) has been adopted in the PD estimation model. Due to the problem of excessive fluctuation and highly volatile ECL estimation, models that produce satisfactory PD and thus ECL estimations in the context of existing risk management techniques are lacking. In this study, we explore the usage of the credit default swap index (CDX), a market’s expectation of future PD, as a predictor of the default rate (DR). By comparing the goodness-of-fit of logistic regression, several conclusions are drawn. Firstly, in general, GDP has considerable explanatory power for the default rate which is consistent with current models in practice. Secondly, although both GDP and CDX fit the DR well for rating B class, CDX has a significantly better fit of DR for ratings [A, Baa, Ba]. Thirdly, compared with low-rated companies, the relationship between the DR and GDP is relatively weak for rating A. This phenomenon implies that, in addition to using macroeconomic variables and firm-specific explanatory variables in the PD estimation model, high-rated companies exhibit a greater need to use market supplemental information, such as CDX, to capture the changes in the DR.
Under the ravages of COVID-19, global supply chains have encountered unprecedented disruptions. Past experiences cannot fully explain the situations nor provide any suitable responses to these fatal shocks on supply chain management (SCM), especially in todays’ highly intertwined/globalized business environment. This research thus revisits and rechecks the crucial components for global SCM during such special periods, and the basic essence of such management covers numerous perspectives that can be categorized into a multiple criteria decision making (MCDM) approach. To handle this complex issue appropriately, one can introduce a fusion intelligent system that involves data envelopment analysis (DEA), rough set theory (RST), and MCDM to understand the reality of the analyzed problem in a faster and better manner. Based on the empirical results, we rank the priorities in order as cash management and information (D), raw material supply (B), global management strategy (C), and productivity and logistics (A) for improvement in SCM. This finding is confirmed by companies now undergoing a downsizing strategy in order to survive in this harsh business environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.