The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.
The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFb1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFb1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed with no observable indications of DNA damage response. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, shuttling between the nucleus and cytoplasm, and clustering at the nuclear periphery. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFb1-induced compositional changes in the chromatin and nuclear lamina.
The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC 50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25 , which demonstrated an 8-fold higher oral AUC ( F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC -amplified cancers including SCLC.
Background Constitutive activation of PI3K signaling has been well recognized in a subset of small cell lung cancer (SCLC), the cancer type which has the most aggressive clinical course amongst pulmonary tumors. Whereas cancers that acquire a mutation/copy gain in PIK3CA or loss of PTEN have been implicated in enhanced sensitivity to inhibitors targeting the PI3K/AKT/mTOR pathway, the complexities of the pathway and corresponding feedback loops hamper clear predictions as to the response of tumors presenting these genomic features. Methods The correlation between the expression profile of proteins involved in the PI3K/AKT/mTOR signaling and cell viability in response to treatment with small molecule inhibitors targeting isoform-specific PI3Ks, AKT, and mTOR was assessed in 13 SCLC cancer cell lines. Athymic nude mice were used to determine the effect of PI3K/mTOR dual inhibition on the growth of xenograft SCLC tumors in vivo. The activation of caspase signaling and proteolytic cleavages of mTOR companion proteins were assessed using recombinant caspases assays and Western blot analyses. Results Our results indicate that the sensitivity of these SCLC cell lines to GSK2126458, a dual PI3K/mTOR inhibitor, is positively correlated with the expression levels of phosphorylated AKT (p-AKT) at Thr308 and Ser473. Inhibition of pan-class I PI3Ks or PI3K/mTOR dual inhibition was shown to induce proteolytic cleavage of RICTOR and RPTOR, which were respectively dependent on Caspase-6 and Caspase-3. A combination of a clinically approved PI3Kα-selective inhibitor and an mTORC1 inhibitor was shown to have synergistic effects in inducing the death of SCLC cells with high p-AKT. We observed no clear correlation between PTEN levels and the survival of SCLCs in response to PI3K/mTOR dual inhibition; however, PTEN depletion was shown to increase the susceptibility of low p-AKT SCLC cells to dual PI3K/mTOR inhibitor-induced cell death as well as the proteolytic cleavage of RICTOR. Conclusions These results suggest the level of p-AKT can be a companion diagnostic biomarker for the treatment of SCLC involving the combinational use of clinically approved isoform-specific PI3K and mTOR inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.