Multiple elastic inclusions with uniform internal stress fields in an infinite elastic matrix are constructed under given uniform remote in-plane loadings. The method is based on the sufficient and necessary condition imposed on the boundary value of a holomorphic function that guarantees the existence of the holomorphic function in a multiply connected region. The unknown shape of each of the multiple inclusions is characterized by a conformal mapping. This work focuses on a major large class of multiple inclusions characterized by a simple condition that covers and is much beyond the known related results reported in previous works. Extensive examples of multiple inclusions with or without geometrical symmetry are shown. Our results showed that the inclusion shapes obtained for the uniformity of internal stress fields are independent of the remote loading only when all of the multiple inclusions have the same shear modulus as that of the matrix. Moreover, specific conditions are derived on remote loading, elastic constants of the inclusions and uniform internal stress fields, which guarantee the existence of multiple symmetric inclusions or multiple rotationally symmetrical inclusions with uniform internal stress fields.
This paper constructs multiple elastic inclusions with prescribed uniform internal strain fields embedded in an infinite matrix under given uniform remote anti-plane shear. The method used is based on the sufficient and necessary conditions imposed on the boundary values of a holomorphic function, which guarantee the existence of the holomorphic function in a multiply connected region. The unknown shape of each of the multiple inclusions is characterized by a polynomial conformal mapping with a finite number of unknown coefficients. With the aid of Cauchy's integral formula and Faber series, these unknown coefficients are determined by a system of nonlinear equations. Detailed numerical examples are shown for multiple inclusions with various prescribed uniform internal strain fields, for symmetrical inclusions and for inclusions whose shapes are independent of the remote loading, respectively. It is found that the admissible range of uniform internal strain fields for multiple inclusions is moderately larger than the admissible range of the uniform internal strain field for a single elliptical inclusion under the same remote loading. In particular, specific conditions on the prescribed uniform internal strain fields and elastic constants of the multiple inclusions are derived for the existence of symmetric inclusions and rotationally symmetrical inclusions. Moreover, for any two inclusions among multiple inclusions of shapes independent of the remote loading, it is shown that the ratio between the uniform internal strain fields inside the two inclusions equals a specific ratio determined by the shear moduli of the two inclusions and the matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.