Tensor computations are gaining wide adoption in big data analysis and artificial intelligence. Among them, tensor completion is used to predict the missing or unobserved value in tensors. The decomposition-based tensor completion algorithms have attracted significant research attention since they exhibit better parallelization and scalability. However, existing optimization techniques for tensor completion cannot sustain the increasing demand for applying tensor completion on ever larger tensor data. To address the above limitations, we develop the first tensor completion library cuTC on multiple Graphics Processing Units (GPUs) with three widely used optimization algorithms such as alternating least squares (ALS), stochastic gradient descent (SGD) and coordinate descent (CCD+). We propose a novel TB-COO format that leverages warp shuffle and shared memory on GPU to enable efficient reduction. In addition, we adopt the auto-tuning method to determine the optimal parameters for better convergence and performance. We compare cuTC with state-of-the-art tensor completion libraries on real-world datasets, and the results show cuTC achieves significant speedup with similar or even better accuracy.
CCS CONCEPTS• Computer systems organization → Parallel architectures; • Computing methodologies → Parallel algorithms.
This paper explores the propagation effect of flight delays among airports in the aviation system and proposes a new measure, the propagation index, to effectively analyze the interrelationship among airports in relation to flight delays. This index quantifies the effect of delay propagation by measuring the causality among delay time series. To assess the effectiveness of the proposed index on airport delays, three neural network-based regression models are built. The comparative experiments demonstrate that the propagation index proposed is highly correlated with observed airport delays.
The huge computation demand of deep learning models and limited computation resources on the edge devices calls for the cooperation between edge device and cloud service by splitting the deep models into two halves. However, transferring the intermediate results from the partial models between edge device and cloud service makes the user privacy vulnerable since the attacker can intercept the intermediate results and extract privacy information from them. Existing research works rely on metrics that are either impractical or insufficient to measure the effectiveness of privacy protection methods in the above scenario, especially from the aspect of a single user. In this paper, we first present a formal definition of the privacy protection problem in the edge-cloud system running DNN models. Then, we analyze the-state-of-the-art methods and point out the drawbacks of their methods, especially the evaluation metrics such as the Mutual Information (MI). In addition, we perform several experiments to demonstrate that although existing methods perform well under MI, they are not effective enough to protect the privacy of a single user. To address the drawbacks of the evaluation metrics, we propose two new metrics that are more accurate to measure the effectiveness of privacy protection methods. Finally, we highlight several potential research directions to encourage future efforts addressing the privacy protection problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.