2D perovskites have emerged as one of the most promising photovoltaic materials owing to their excellent stability compared with their 3D counterparts. However, in typical 2D perovskites, the highly conductive inorganic layers are isolated by large organic cations leading to quantum confinement and thus inferior electrical conductivity across layers. To address this issue, the large organic cations are replaced with small propane-1,3-diammonium (PDA) cations to reduce distance between the inorganic perovskite layers. As shown by optical characterizations, quantum confinement is no longer dominating in the PDA-based 2D perovskites. This leads to considerable enhancement of charge transport as confirmed with electrochemical impedance spectroscopy, time-resolved photoluminescence, and mobility measurements. The improved electric properties of the interlayer-engineered 2D perovskites yield a power conversion efficiency of 13.0%. Furthermore, environmental stabilities of the PDA-based 2D perovskites are improved. PDA-based 2D perovskite solar cells (PSCs) with encapsulation can retain over 90% of their efficiency upon storage for over 1000 h, and PSCs without encapsulation can maintain their initial efficiency at 70 °C for over 100 h, which exhibit promising stabilities. These results reveal excellent optoelectronic properties and intrinsic stabilities of the layered perovskites with reduced interlayer distance.
The exact hosts for F-P hybrid WOLEDs have been first demonstrated following a new design strategy for blue fluorophors with small singlet-triplet splitting. Two novel compounds DPMC and DAPSF exhibit efficient blue fluorescence, high triplet energies and good conductivities. These merits allow us to use new simplified device designs to achieve high efficiency, slow efficiency roll-off and stable emission color.
We study the formation chemistry of Cl-doped perovskites by examining the chemical interactions between thermally evaporated MAI and PbCl2through X-ray photoemission spectroscopy.
We show the effects of chlorine incorporation in the crystallization process of perovskite film based on a lead acetate precursor. We demonstrate a fabrication process for fast grain growth with highly preferred {110} orientation upon only 5 min of annealing at 100 °C. By studying the correlation between precursor composition and morphology, the growth dynamic of perovskite film in the current system is discussed. In particular, we found that both lead acetate precursor and Cl incorporation are beneficial to perovskite growth. While lead acetate allows fast crystallization process, Cl improves perovskite crystallinity. Planar perovskite solar cells with optimized parameters deliver a best power conversion efficiency of 15.0% and average efficiency of 14.0% with remarkable reproducibility and good stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.