Recent studies suggest that months to years of intensive and systematic meditation training can improve attention. However, the lengthy training required has made it difficult to use random assignment of participants to conditions to confirm these findings. This article shows that a group randomly assigned to 5 days of meditation practice with the integrative body-mind training method shows significantly better attention and control of stress than a similarly chosen control group given relaxation training. The training method comes from traditional Chinese medicine and incorporates aspects of other meditation and mindfulness training. Compared with the control group, the experimental group of 40 undergraduate Chinese students given 5 days of 20-min integrative training showed greater improvement in conflict scores on the Attention Network Test, lower anxiety, depression, anger, and fatigue, and higher vigor on the Profile of Mood States scale, a significant decrease in stress-related cortisol, and an increase in immunoreactivity. These results provide a convenient method for studying the influence of meditation training by using experimental and control methods similar to those used to test drugs or other interventions.anterior cingulate gyrus ͉ attention training ͉ control ͉ mental training
Five days of integrative body-mind training (IBMT) improves attention and self-regulation in comparison with the same amount of relaxation training. This paper explores the underlying mechanisms of this finding. We measured the physiological and brain changes at rest before, during, and after 5 days of IBMT and relaxation training. During and after training, the IBMT group showed significantly better physiological reactions in heart rate, respiratory amplitude and rate, and skin conductance response (SCR) than the relaxation control. Differences in heart rate variability (HRV) and EEG power suggested greater involvement of the autonomic nervous system (ANS) in the IBMT group during and after training. Imaging data demonstrated stronger subgenual and adjacent ventral anterior cingulate cortex (ACC) activity in the IBMT group. Frontal midline ACC theta was correlated with highfrequency HRV, suggesting control by the ACC over parasympathetic activity. These results indicate that after 5 days of training, the IBMT group shows better regulation of the ANS by a ventral midfrontal brain system than does the relaxation group. This changed state probably reflects training in the coordination of body and mind given in the IBMT but not in the control group. These results could be useful in the design of further specific interventions.anterior cingulate cortex ͉ body-mind interaction ͉ IBMT I n a previous study (1, 2), 80 Chinese undergraduates were randomly assigned to an experimental group (integrative body-mind training, IBMT) or to a control group (relaxation training) for 5 days of short-term training (20 min per day). Before training, no differences were found for behavioral, endocrine, and immune measures between the 2 groups. After 5 days of training, the IBMT group showed significantly greater improvement of performance in executive attention and positive mood, significantly reduced stress as measured by cortisol secretion following a stressful experience, and increased immunoreactivity compared to participants with the same amount of relaxation training.IBMT was adopted from traditional Chinese medicine and incorporates aspects of meditation and mindfulness training. Cooperation between the body and the mind is emphasized in facilitating and achieving a meditative state (1, 3). Combined use of body and mind training is consistent with studies in which changes in the body influence and facilitate emotional and cognitive processing (4-7). Relaxation training, on the other hand, requires voluntary control in progressive relaxation of the muscles of the body, sending feedback to influence the mind (8, 9). During relaxation training, thinking about control operations could interfere with training effects (1, 3), leading to different results between the IBMT and the relaxation groups.To test the mechanisms of training, this study used random assignment of 86 Chinese undergraduates to 2 experimental (IBMT) or control (relaxation) groups. Forty-six subjects participated in experiment I using brain imaging and physiologica...
SUMMARY A substantial amount of mitochondrial energy is required for cell cycle progression. However, the mechanisms coordinating the mitochondrial respiration with G2/M transition, a critical step in cell division, remains to be elucidated. Here we show that a fraction of cell cycle CyclinB1/Cdk1 proteins localizes into the matrix of mitochondria and phosphorylates a cluster of mitochondrial proteins including the complex I (CI) subunits in the respiratory chain. The CyclinB1/Cdk1-mediated CI subunit phosphorylation enhances CI activity, whereas deficiency of such phosphorylation in each of the relevant CI subunits results in impairment of CI function. Mitochondria-targeted CyclinB1/Cdk1 increases mitochondrial respiration with enhanced oxygen consumption and ATP generation, which provides cells with efficient bioenergy for G2/M transition and shortens overall cycling time. Thus, CyclinB1/Cdk1-mediated phosphorylation of mitochondrial substrates allows cells to sense and respond to an increased energy demand for G2/M transition, and subsequently to up-regulate mitochondrial respiration for a successful cell cycle progression.
Using diffusion tensor imaging, several recent studies have shown that training results in changes in white matter efficiency as measured by fractional anisotropy (FA). In our work, we found that a form of mindfulness meditation, integrative body-mind training (IBMT), improved FA in areas surrounding the anterior cingulate cortex after 4-wk training more than controls given relaxation training. Reductions in radial diffusivity (RD) have been interpreted as improved myelin but reductions in axial diffusivity (AD) involve other mechanisms, such as axonal density. We now report that after 4-wk training with IBMT, both RD and AD decrease accompanied by increased FA, indicating improved efficiency of white matter involves increased myelin as well as other axonal changes. However, 2-wk IBMT reduced AD, but not RD or FA, and improved moods. Our results demonstrate the time-course of white matter neuroplasticity in short-term meditation. This dynamic pattern of white matter change involving the anterior cingulate cortex, a part of the brain network related to self-regulation, could provide a means for intervention to improve or prevent mental disorders.attention network test | anterior corona radiata | profile of mood states D iffusion tensor imaging (DTI) is a noninvasive MRI-based technique that can delineate white matter fibers in vivo. DTI is capable of measuring white matter's structural plasticity. Studies indicate that training or learning alters brain white matter (1-5). Fractional anisotropy (FA) is an important index for measuring the integrity of white matter fibers. In general, a higher FA value has been related to improved performance, and reduced FA has been found in normal aging and in neurological or psychiatric disorders (1,(6)(7)(8).FA alterations originate from several factors, such as changes in myelination, axon density, axonal membrane integrity, axon diameter, and intravoxel coherence of fiber orientation and others changes (1, 9). To understand the mechanisms of FA change, several DTI studies have examined axial diffusivity (AD) and radial diffusivity (RD), the most important indices associated with FA (6-8). Usually, alterations in AD are associated with axon morphological changes, such as changes in axonal density or caliber (10, 11). In contrast to AD, which signifies axonal morphology, RD implicates the character of the myelin. Decrease in RD implies increased myelination, and increase represents demyelination (2,3,8). This evidence in human neuroimaging studies is consistent with animal studies examining axons and myelination histologically and comparing them directly with DTI results (12, 13).To examine RD and AD it is best to have a significant change in FA (14). Thus, in our study we investigated AD and RD alteration patterns only where integrity of white matter fibers are enhanced (identified by FA increase). Numerous studies have used AD and RD changes in the location where FA changes are found to determine whether the FA changes are a result of axonic morphology or myelin (1-3, 6, 8, 1...
MicroRNAs (miRNAs) have recently been proposed as a versatile class of molecules involved in regulation of a variety of biological processes. However, the role of miRNAs in TGF-β-regulated biological processes is poorly addressed. In this study, we found that miR-24 was upregulated during myoblast differentiation and could be inhibited by TGF-β1. Using both a reporter assay and Northern blot analysis, we showed that TGF-β1 repressed miR-24 transcription which was dependent on the presence of Smad3 and a Smads binding site in the promoter region of miR-24. TGF-β1 was unable to inhibit miR-24 expression in Smad3-deficient myoblasts, which exhibited accelerated myogenesis. Knockdown of miR-24 led to reduced expression of myogenic differentiation markers in C2C12 cells, while ectopic expression of miR-24 enhanced differentiation, and partially rescued inhibited myogenesis by TGF-β1. This is the first study demonstrating a critical role for miRNAs in modulating TGF-β-dependent inhibition of myogenesis, and provides a novel mechanism of the genetic regulation of TGF-β signaling during skeletal muscle differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.