The catalytic performances of supported gold nanoparticles depend critically on the nature of support. Here, we report the first evidence of strong metal-support interactions (SMSI) between gold nanoparticles and ZnO nanorods based on results of structural and spectroscopic characterization. The catalyst shows encapsulation of gold nanoparticles by ZnO and the electron transfer between gold and the support. Detailed characterizations of the interaction between Au nanoparticles and ZnO were done with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and FTIR study of adsorbed CO. The significance of the SMSI effect is further investigated by probing the efficiency of CO oxidation over the Au/ZnO-nanorod. In contrast to the classical reductive SMSI in the TiO(2) supported group VIII metals which appears after high temperature reduction in H(2) with electron transfer from the support to metals, the oxidative SMSI in Au/ZnO-nanorod system gives oxygen-induced burial and electron transfer from gold to support. In CO oxidation, we found that the oxidative SMSI state is associated with positively charged gold nanoparticles with strong effect on its catalytic activity before and after encapsulation. The oxidative SMSI can be reversed by hydrogen treatment to induce AuZn alloy formation, de-encapsulation, and electron transfer from support to Au. Our discovery of the SMSI effects in Au/ZnO nanorods gives new understandings of the interaction between gold and support and provides new way to control the interaction between gold and the support as well as catalytic activity.
A fabrication of ZnO hierarchical mesocrystal was achieved by a biomimetic method using gelatin as structure-directing agent. It was found that the ZnO−gelatin microcrystal with well-defined hexagonal twin plate shape is built by the stacking of nanoplates. The irregularly edged nanoplates can adjust themselves to each other throughout the microcrystal, resulting in a roughly hexagonal edge. Selected area electron diffraction (SAED) analysis of the ZnO−gelatin microcrystal demonstrates that all the stacked nanoplates are aligned and oriented to form a single-crystal structure with hexagonal symmetry. The hierarchical structure of ZnO was found to resemble that of naturally occurring nacre. Similar to nacreous architecture, the nanoplate of ZnO was constructed from the oriented attachment of ZnO nanoparticles. More importantly, the lattices of the stacked nanoplates are aligned through mineral bridges between neighboring plates. A mechanism scheme is proposed for the formation of the gelatin−ZnO hybrid hierarchical structure. The preserved hexagonal shape of the mesocrystal structure consequently results in a whispering gallery mode (WGM) of optical emission where light was confined in the hexagons by total internal reflection. The observation of WGM mode emission in the ZnO hexagon structure shows promises for nanoscale fabrication of optoelectronic devices.
We present a strategy to prepare a highly active Au/ZnO catalyst for CO oxidation by introducing abundant Zn- and O-vacancy defects into a ZnO support of mesocrystal form. Two different ZnO supports were chosen for comparison; almost defect-free ZnO nanorods (NR-ZnO) and twin-brush-like ZnO mesocrystals (TB-ZnO) with rich Zn/O-vacancy defects gave Au/NR-ZnO and Au/TB-ZnO upon deposition of gold nanoparticles. The catalytic test of CO oxidation over Au/TB-ZnO catalyst showed an enhanced catalytic activity that was 153 times greater than the activity of Au/NR-ZnO. The dramatic enhancement in CO oxidation is attributed to a room-temperature Mars–van Krevelen (MvK) mechanism on the surface of the Au/TB-ZnO catalyst, which was promoted by extensive vacancy defects in TB-ZnO. To elucidate the increase in activity, the vacancy ratio (i.e., [VO •]/[VZn •]) of TB-ZnO was systematically modulated by adjusting calcination conditions. The defective ZnO support altered the tendency in the variation of size, valence state, and activity of gold correlated to an increased vacancy ratio. Combining experimental results and theoretical modeling, it is concluded that the higher vacancy ratio [VO •]/[VZn •] in support endows defective ZnO with accommodation of plenty of “Au–O–AuZn” linkages (AuZn denotes Au substitution at a Zn site) around gold nanoparticles. The O atom extraction from “Au–O–AuZn” linkages formed by gold doping in ZnO lattice is energetically more favorable than typical “Au–O–Zn” linkages at the perimeter of gold, facilitating CO oxidation via MvK mechanism. Systematic manipulation of defects density in the support provides a method in improving catalytic properties of supported gold catalysts.
Highly dispersed supported gold with strong metal–support interaction is a desirable material for heterogeneous catalysis. Unlike current dispersion strategies of depositing gold from solution to support, we report herein a new method of producing highly dispersed gold clusters on ZnO mesocrystal. The gold clusters appeared on defect-rich twin-brush ZnO mesocrystals (TB-ZnO) via an in-and-out process: (i) a mixed Au/Zn oxide was formed first after deposition-precipitation of Au with AuCl4 –, (ii) fine Au clusters grow from the underneath to the surface of the oxide after heating. The TB-ZnO behaved like a sponge allowing gold atoms to heavily disperse into the wurtzite structure of ZnO with Zn-substitution by gold. After mild thermal treatment, the embedded gold emerged from underneath of the ZnO support to form highly dispersed Au nanoparticles of ∼2 nm on the ZnO surface. DFT calculation shows energetically favored Au-doping in TB-ZnO and facile defect-mediated migration of Au in it. The material (Au/TB-ZnO) gave outstanding activities for the catalysis of CO oxidation. The use of mesocrystals of metal oxide as supports, with rich vacancy defects, provides a new route for preparing highly dispersed and active supported metal catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.