Graphene is a 2-dimensional (2D) carbon allotrope with the atoms arranged in a honeycomb lattice. The low-energy electronic excitations in this 2D crystal are described by massless Dirac fermions that have a linear dispersion relation similar to photons. Taking advantage of this optics-like electron dynamics, generic optical elements like lenses, beam splitters and wave guides have been proposed for electrons in engineered ballistic graphene. Tuning of these elements relies on the ability to adjust the carrier concentration in defined areas, including the possibility to create bipolar regions of opposite charge (p-n regions). However, the combination of ballistic transport and complex electrostatic gating remains challenging. Here, we report on the fabrication and characterization of fully suspended graphene p-n junctions. By local electro-static gating, resonant cavities can be defined, leading to complex Fabry-Perot interference patterns in the unipolar and the bipolar regime. The amplitude of the observed conductance oscillations accounts for quantum interference of electrons that propagate ballistically over long distances exceeding 1 micron. We also demonstrate that the visibility of the interference pattern is enhanced by Klein collimation at the p-n interface. This finding paves the way to more complex gate-controlled ballistic graphene devices and brings electron optics in graphene closer to reality.Comment: 15 pages, 5 figure
Snake states are trajectories of charge carriers curving back and forth along an interface. There are two types of snake states, formed by either inverting the magnetic field direction or the charge carrier type at an interface. The former has been demonstrated in GaAs–AlGaAs heterostructures, whereas the latter has become conceivable only with the advance of ballistic graphene where a gap-less p–n interface governed by Klein tunnelling can be formed. Such snake states were hidden in previous experiments due to limited sample quality. Here we report on magneto-conductance oscillations due to snake states in a ballistic suspended graphene p–n junction, which occur already at a very small magnetic field of 20 mT. The visibility of 30% is enabled by Klein collimation. Our finding is firmly supported by quantum transport simulations. We demonstrate the high tunability of the device and operate it in different magnetic field regimes.
We explore a network of electronic quantum valley Hall (QVH) states in the moiré crystal of minimally twisted bilayer graphene. In our transport measurements we observe Fabry-Pérot and Aharanov-Bohm oscillations which are robust in magnetic fields ranging from 0 to 8 T, in strong contrast to more conventional 2D systems where trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic field and the linear spacing in density indicate that charge carriers in the bulk flow in topologically protected, one dimensional channels. With this work we demonstrate coherent electronic transport in a lattice of topologically protected states. arXiv:1802.07317v2 [cond-mat.mes-hall]
The specific rotational alignment of two-dimensional lattices results in a moiré superlattice with a larger period than the original lattices and allows one to engineer the electronic band structure of such materials. So far, transport signatures of such superlattices have been reported for graphene/hBN and graphene/graphene systems. Here we report moiré superlattices in fully hBN encapsulated graphene with both the top and the bottom hBN aligned to the graphene. In the graphene, two different moiré superlattices form with the top and the bottom hBN, respectively. The overlay of the two superlattices can result in a third superlattice with a period larger than the maximum period (14 nm) in the graphene/hBN system, which we explain in a simple model. This new type of band structure engineering allows one to artificially create an even wider spectrum of electronic properties in two-dimensional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.