CD40L, a member of the tumor necrosis factor family of ligands, plays a major role in immune responses via its receptor, CD40. Recently, CD40L has been detected on the surfaces of activated platelets and shown to activate endothelium. Here we further addressed the function of platelet CD40L. We show that absence of CD40L affects the stability of arterial thrombi and delays arterial occlusion in vivo. Infusion of recombinant soluble (rs)CD40L restored normal thrombosis, whereas rsCD40L lacking the KGD integrin-recognition sequence did not. CD40-deficient mice exhibited normal thrombogenesis. rsCD40L specifically bound to purified integrin alphaIIbbeta3 and to activated platelets in a beta3-dependent manner and induced platelet spreading. In addition, rsCD40L promoted the aggregation of either human or mouse platelets under high shear rates. Thus, CD40L appears to be an alphaIIbbeta3 ligand, a platelet agonist, and necessary for stability of arterial thrombi.
We earlier reported that the soluble form of the CD40 ligand (sCD40L), is involved in thrombosis by stabilizing platelet thrombi. In this article, we have determined the mechanism by which this protein affects platelet biology. Addition of sCD40L to washed platelets was found to activate the receptor function of ␣IIb3 as measured by the induction of fibrinogen binding and the formation of platelet microparticles. Mutation in the KGD sequence (D117E) of sCD40L, the ␣IIb3-binding domain in the N terminus of the protein resulted in a loss of the platelet-stimulatory activity of this protein. Integrilin, a ␣IIb3 antagonist, but not an antibody to CD40 that blocked the ligand-binding activity, inhibited these platelet-stimulatory events. CD40 ؊/؊ platelets bound fibrinogen and formed microparticles similar to WT platelets, again indicating that CD40 is not involved in sCD40L-induced platelet activation. Exposure of platelets to sCD40L, but not D117E-sCD40L-coated surfaces, induced platelet thrombi formation under arterial shear rate. sCD40L-induced platelet stimulation resulted in the phosphorylation of tyrosine-759 in the cytoplasmic domain of 3. Platelets from the diYF mouse strain, expressing 3 in which both cytoplasmic tyrosines are mutated to phenylalanine, were defective in sCD40L-induced platelet stimulation. These data indicate that sCD40L is a primary platelet agonist and that platelet stimulation is induced by the binding of the KGD domain of sCD40L to ␣IIb3, triggering outside-in signaling by tyrosine phosphorylation of 3.
Cell-wall deposition of cellulose microfibrils is essential for plant growth and development. In plant cells, cellulose synthesis is accomplished by cellulose synthase complexes located in the plasma membrane. Trafficking of the complex between endomembrane compartments and the plasma membrane is vital for cellulose biosynthesis; however, the mechanism for this process is not well understood. We here report that, in Arabidopsis thaliana, Rab-H1b, a Golgi-localized small GTPase, participates in the trafficking of CELLULOSE SYNTHASE 6 (CESA6) to the plasma membrane. Loss of Rab-H1b function resulted in altered distribution and motility of CESA6 in the plasma membrane and reduced cellulose content. Seedlings with this defect exhibited short, fragile etiolated hypocotyls. Exocytosis of CESA6 was impaired in rab-h1b cells, and endocytosis in mutant cells was significantly reduced as well. We further observed accumulation of vesicles around an abnormal Golgi apparatus having an increased number of cisternae in rab-h1b cells, suggesting a defect in cisternal homeostasis caused by Rab-H1b loss function. Our findings link Rab GTPases to cellulose biosynthesis, during hypocotyl growth, and suggest Rab-H1b is crucial for modulating the trafficking of cellulose synthase complexes between endomembrane compartments and the plasma membrane and for maintaining Golgi organization and morphology.
BackgroundArterial thrombosis triggered by vascular injury is a balance between thrombus growth and thrombus fragmentation (dethrombosis). Unbalance towards thrombus growth can lead to vascular occlusion, downstream ischemia and tissue damage.Here we describe the development of a simple methodology that allows for continuous real time monitoring and quantification of both processes during perfusion of human blood under arterial shear rate conditions. Using this methodology, we have studied the effects of antiplatelet agents targeting COX-1 (aspirin), P2Y12 (2-MeSAMP, clopidogrel), GP IIb-IIIa (eptifibatide) and their combinations on the kinetics of thrombosis over time.ResultsUntreated samples of blood perfused over type III collagen at arterial rates of shear promoted the growth of stable thrombi. Modulation by eptifibatide affected thrombus growth, while that mediated by 2-MeSAMP and aspirin affected thrombus stability. Using this technique, we confirmed the primacy of continuous signaling by the ADP autocrine loop acting on P2Y12 in the maintenance of thrombus stability. Analysis of the kinetics of thrombosis revealed that continuous and prolonged analysis of thrombosis is required to capture the role of platelet signaling pathways in their entirety. Furthermore, studies evaluating the thrombotic profiles of 20 healthy volunteers treated with aspirin, clopidogrel or their combination indicated that while three individuals did not benefits from either aspirin or clopidogrel treatments, all individuals displayed marked destabilization profiles when treated with the combination regimen.ConclusionsThese results show the utility of a simple perfusion chamber technology to assess in real time the activity of antiplatelet drugs and their combinations. It offers the opportunity to perform pharmacodynamic monitoring of arterial thrombosis in clinical trials and to investigate novel strategies directed at inhibiting thrombus stability in the management of cardiovascular disease.
Proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR) are characterized by the development of epi-retinal membranes which may exert a tractional force on retina. A lot of inflammatory growth factors may disturb the local ocular cells such as retinal pigment epithelial (RPE) cells, causing them to migrate and proliferate in the vitreous cavity and ultimately forming the PVR membrane. In this study, the signal pathways mediating cell migration of RPE induced by growth factors were investigated. Hepatocyte growth factor (HGF), epidermal growth factor (EGF) or heparin-binding epidermal growth factor (HB-EGF) induced a greater extent of migration of RPE50 and ARPE19 cells, compared with other growth factors. According to inhibitor studies, migration of RPE cells induced by each growth factor was mediated by protein kinase C (PKC) and ERK (MAPK). Moreover, HGF coupled with EGF or HB-EGF had synergistic effects on cell migration and enhanced activation of PKC and ERK, which were attributed to cross activation of growth factor receptors by heterogeneous ligands. Furthermore, using the shRNA technique, PKCδ was found to be the most important PKC isozyme involved. Finally, vitreous fluids from PVR and PDR patients with high concentration of HGF may induce RPE cell migration in PKCδ- and ERK- dependent manner. In conclusion, migration of RPE cells can be synergistically induced by HGF coupled with HB-EGF or EGF, which were mediated by enhanced PKCδ activation and ERK phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.