Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer’s Disease. The Alzheimer’s Disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer’s Disease based on high-dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for to prediction of cognitive performance.
Accurate detection of the regions of Alzheimer's disease (AD) lesions is critical for early intervention to effectively slow down the progression of the disease. Although gray matter volumetric abnormalities are commonly detected in patients with mild cognition impairment (MCI) and patients with AD, the gray matter surface-based deterioration pattern associated with the progression of the disease from MCI to AD stages is largely unknown. To identify group differences in gray matter surface morphometry, including cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were split into healthy controls (HCs; N = 20), early MCIs (EMCI; N = 20), late MCIs (LMCI; N = 20), and ADs (N = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently studied and compared across the four stage groups to characterize the gray matter deterioration during AD progression. Co-alteration patterns (Spearman's correlation coefficient) across the whole brain were also examined. Results showed that patients with MCI and AD exhibited a significant reduction in cortical thickness (p < 0.001) mainly in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal (five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth of the eight temporal, four frontal, four occipital, and eight parietal subregions were also significantly affected (p < 0.001) by the progression of AD. The GI was shown to be insensitive to AD progression (only three subregions were detected with a significant difference, p < 0.001). Moreover, Spearman's correlation analysis confirmed that the co-alteration pattern of the cortical thickness and sulcus depth indices is predominant during AD progression. The findings highlight the relevance between gray matter surface morphometry and the stages of AD, laying the foundation for in vivo tracking of AD progression. The co-alteration pattern of surface-based morphometry would improve the researchers' knowledge of the underlying pathologic mechanisms in AD.
The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.
The traditional collaborative filtering model suffers from high-dimensional sparse user rating information and ignores user preference information contained in user reviews. To address the problem, this paper proposes a new collaborative filtering model UL_SAM (UBCF_LDA_SIMILAR_ADD_MEAN) which integrates topic model with user-based collaborative filtering model. UL_SAM extracts user preference information from user reviews through topic model and then fuses user preference information with user rating information by similarity fusion method to create fusion information. UL_SAM creates collaborative filtering recommendations according to fusion information. It is the advantage of UL_SAM on improving recommendation effectiveness that UL_SAM enriches information for collaborative recommendation by integrating user preference with user rating information. Experimental results of two public datasets demonstrate significant improvement on recommendation effectiveness in our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.