Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called 'crown gall', via the transfer and integration of transferred DNA (T-DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)-induced tumour-inducing (Ti) plasmid gene, tzs (trans-zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline-type A. tumefaciens strains. The loss of Tzs protein expression and trans-zeatin secretions by the tzs frameshift (tzs-fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs-fs mutant with a wild-type tzs gene restored wild-type levels of trans-zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium-produced cytokinin. Interestingly, although the tzs-fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans-zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens.
Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (α-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other α-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.