Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F 0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
In cultured cells, the 230-kDa protein talin is found at discrete plasma membrane foci known as focal adhesions, sites that anchor the intracellular actin cytoskeleton to the extracellular matrix. The regulated assembly of focal adhesions influences the direction of cell migrations or the reorientation of cell shapes. Biochemical studies of talin have shown that it binds to the proteins integrin, vinculin, and actin in vitro. To understand the function of talin in vivo and to correlate its in vitro and in vivo biochemical properties, various genetic approaches have been adopted. With the intention of using genetics in the study of talin, we identified a homologue to mouse talin in a genetic model system, the nematode Caenorhabditis elegans. C. elegans talin is 39% identical and 59% similar to mouse talin. In wild-type adult C. elegans, talin colocalizes with integrin, vinculin, and alpha-actinin in the focal adhesion-like structures found in the body-wall muscle. By examining the organization of talin in two different C. elegans mutant strains that do not make either beta-integrin or vinculin, we were able to determine that talin does not require vinculin for its initial organization at the membrane, but that it depends critically on the presence of integrin for its initial assembly at membrane foci.
Caenorhabditis elegans strains mutant for the unc-27 gene show abnormal locomotion and muscle structure. Experiments revealed that unc-27 is one of four C. elegans troponin I genes and that three mutant alleles truncate the protein: recessive and presumed null allele e155 terminates after nine codons; semidominant su142sd eliminates the inhibitory and C-terminal regions; and semidominant su195sd abbreviates the extreme C-terminus. Assays of in vivo muscular performance at high and low loads indicated that su142sd is most deleterious, with e155 least and su195sd intermediate. Microscopy revealed in mutant muscle a prevalent disorder of dense body positioning and a less well defined sarcomeric structure, with small islands of thin filaments interspersed within the overlap region of A bands and even within the H zone. The mutants' rigid paralysis and sarcomeric disarray are consistent with unregulated contraction of the sarcomeres, in which small portions of each myofibril shorten irregularly and independently of one another, thereby distorting the disposition of filaments. The exacerbated deficits of su142sd worms are compatible with involvement in vivo of the N-terminal portion of troponin I in enhancing force production, and the severe impairment associated with su195sd highlights importance of the extreme C-terminus in the protein's inhibitory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.