High-performance polycrystalline-germanium (poly-Ge) thin-film transistors (TFTs) fabricated with lightly doped Ge thin films by excimer laser crystallization (ELC) and counter doping (CD) have been demonstrated. High-quality n-type Ge thin films with a grain size as large as 1 µm were fabricated by ELC in the super lateral-growth regime and CD at a dose of 1 × 1013 cm−2 or higher. Consequently, a superior field-effect mobility of 271 cm2 V−1 s−1 and a high on/off current ratio of 2.7 × 103 have been obtained for p-channel Ge TFTs with the channel width and length of both 0.5 µm fabricated by ELC at 300 mJ/cm2 and CD at a dose of 1 × 1013 cm−2. The effects of ELC conditions and CD dose on the electrical characteristics of p-channel Ge TFTs were also investigated.
High-quality polycrystalline-germanium (poly-Ge) thin films have been successfully fabricated by excimer laser crystallization (ELC). Grains as large as 1 µm were achieved by ELC at 300 mJ/cm2. Meanwhile, the defect-generated hole concentrations in Ge thin films were significantly reduced. Furthermore, the majority carriers could then be converted to n-type by counter doping (CD) with a suitable dose. Then, high-performance p-channel Ge thin-film transistors (TFTs) with a high on/off current ratio of up to 1.7 × 103 and a high field-effect mobility of up to 208 cm2 V−1 s−1 were demonstrated for a channel width and length both of 0.5 µm. It was revealed that ELC combined with CD is effective for attaining high-performance p-channel poly-Ge TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.