Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.
Active learning enables learners to actively engage in learning. Learning not only transfers material to students for learning, but also encourages greater mental engagement and more extensive studentstudent and student-instructor interaction than does a typical lecture class. Peer Instruction (PI) engages students in active learning by achieving continuous instructor-student interaction in a physics lecture. However, the methodologies and the effectiveness of implementing PI for elementary school students have seldom been clarified. This study explores the possibility of adopting PI in an elementary science classroom. The research considerations of the study are as follows: (1) how wireless technology can enhance PI in elementary science classroom; (2) how a teacher can engage students in pre-class reading, and (3) whether elementary school students have sufficient social skills to perform a PI discussion? These questions are examined by observing how the PI pedagogical model worked with a wireless response system in elementary science classroom. Based on the observation, this study also proposes a way of improving the PI learning experience of elementary school students by adding experiments and observations during peer discussion to explain concepts and phenomena in physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.