Inflammation is highly prevalent among peritoneal dialysis (PD) patients. High-sensitivity C-reactive protein (hs-CRP) is the most widely used inflammatory marker in clinical medicine and is correlated with mortality in PD patients. Air pollution is associated with systemic inflammation. The aim of this cross-sectional study was to assess the role of air pollutants and other clinical variables on hs-CRP values in PD patients.We recruited a total of 175 patients who had been undergoing continuous ambulatory PD or automated PD for at least 4 months and regularly followed up. Air pollution levels were recorded by a network of 27 monitoring stations near or in the patients’ living areas throughout Taiwan. The 12-month average concentrations of particulate matter (PM) with an aerodynamic diameter of <10 and <2.5 μm (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were included.In stepwise linear regression, after adjustment for related factors, white blood cell count (β: 0.27, 95% confidence interval [CI] [0.71, 2.11]) and CO level (β: 0.17, 95% CI [2.5, 21.32]) were positively associated with hs-CRP and serum albumin levels (β: −0.25, 95% CI [−13.69, −3.96]) and normalized protein nitrogen appearance (β: −0.18, 95% CI [−17.7, −2.51]) was negatively associated with hs-CRP. However, serum indoxyl sulfate and p-cresyl sulfate levels were not significantly associated with hs-CRP (P > 0.05).In PD patients, the environmental CO level was positively correlated with hs-CRP level.
Background Several biomarkers have been proposed to predict the occurrence of acute kidney injury (AKI); however, their efficacy varies between different trials. The aim of this study was to compare the predictive performance of different candidate biomarkers for AKI. Methods In this systematic review, we searched PubMed, Medline, Embase, and the Cochrane Library for papers published up to August 15, 2022. We selected all studies of adults (> 18 years) that reported the predictive performance of damage biomarkers (neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty acid-binding protein (L-FABP)), inflammatory biomarker (interleukin-18 (IL-18)), and stress biomarker (tissue inhibitor of metalloproteinases-2 × insulin-like growth factor-binding protein-7 (TIMP-2 × IGFBP-7)) for the occurrence of AKI. We performed pairwise meta-analyses to calculate odds ratios (ORs) and 95% confidence intervals (CIs) individually. Hierarchical summary receiver operating characteristic curves (HSROCs) were used to summarize the pooled test performance, and the Grading of Recommendations, Assessment, Development and Evaluations criteria were used to appraise the quality of evidence. Results We identified 242 published relevant studies from 1,803 screened abstracts, of which 110 studies with 38,725 patients were included in this meta-analysis. Urinary NGAL/creatinine (diagnostic odds ratio [DOR] 16.2, 95% CI 10.1–25.9), urinary NGAL (DOR 13.8, 95% CI 10.2–18.8), and serum NGAL (DOR 12.6, 95% CI 9.3–17.3) had the best diagnostic accuracy for the risk of AKI. In subgroup analyses, urinary NGAL, urinary NGAL/creatinine, and serum NGAL had better diagnostic accuracy for AKI than urinary IL-18 in non-critically ill patients. However, all of the biomarkers had similar diagnostic accuracy in critically ill patients. In the setting of medical and non-sepsis patients, urinary NGAL had better predictive performance than urinary IL-18, urinary L-FABP, and urinary TIMP-2 × IGFBP-7: 0.3. In the surgical patients, urinary NGAL/creatinine and urinary KIM-1 had the best diagnostic accuracy. The HSROC values of urinary NGAL/creatinine, urinary NGAL, and serum NGAL were 91.4%, 85.2%, and 84.7%, respectively. Conclusions Biomarkers containing NGAL had the best predictive accuracy for the occurrence of AKI, regardless of whether or not the values were adjusted by urinary creatinine, and especially in medically treated patients. However, the predictive performance of urinary NGAL was limited in surgical patients, and urinary NGAL/creatinine seemed to be the most accurate biomarkers in these patients. All of the biomarkers had similar predictive performance in critically ill patients. Trial registrationCRD42020207883, October 06, 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.