In this study, an automatic classification method based on the sentiment polarity of text is proposed. This method uses two sentiment dictionaries from different sources: the Chinese sentiment dictionary CSWN that integrates Chinese WordNet with SentiWordNet, and the sentiment dictionary obtained from a training corpus labeled with sentiment polarities. In this study, the sentiment polarity of text is analyzed using these two dictionaries, a mixed-rule approach, and a statistics-based prediction model. The proposed method is used to analyze a test corpus provided by the Topic-Based Chinese Message Polarity Classification task of SIGHAN-8, and the F1-measure value is tested at 0.62.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.