Research into macromolecular self-assembly has been progressively developing since the 1970s but with a little affect from the achievements of supramolecular chemistry. In recent years, this situation has changed as more and more factors and concepts in supramolecular chemistry have been introduced into studies of the self-assembly of polymers. In this respect, inclusion complexation based on cyclodextrins plays a remarkable role. In this tutorial review, we address how inclusion complexation has been employed and used to promote the recent developments in macromolecular self-assembly. These include the amphiphilicity adjustment of macromolecules, non-covalent linkages for forming pseudo block copolymers and micelles, surface modification and functionalization of polymeric micelles and vesicles, and the combination of synthetic polymeric assemblies with biological moieties. Furthermore, the realization of the reversible stimuli-responsiveness of polymeric assemblies and materials, particularly hydrogels by means of controllable inclusion complexation is discussed as well.
Ultrasound (US)-driven sonodynamic therapy (SDT) has demonstrated wide application prospects in the eradication of deep-seated bacterial infections due to its noninvasiveness, site-confined irradiation, and high-tissue-penetrating capability. However, the ineffective accumulation of sonosensitizers at the infection site, the hypoxic microenvironment, as well as rapid depletion of oxygen during SDT greatly hamper the therapeutic efficacy of SDT. Herein, an US-switchable nanozyme system was proposed for the controllable generation of catalytic oxygen and sonosensitizer-mediated reactive oxygen species during ultrasound activation, thereby alleviating the hypoxia-associated barrier and augmenting SDT efficacy. This nanoplatform (Pd@Pt-T790) was easily prepared by bridging enzyme-catalytic Pd@Pt nanoplates with the organic sonosensitizer meso-tetra(4-carboxyphenyl)porphine (T790). It was really interesting to find that the modification of T790 onto Pd@Pt could significantly block the catalase-like activity of Pd@Pt, whereas upon US irradiation, the nanozyme activity was effectively recovered to catalyze the decomposition of endogenous H2O2 into O2. Such “blocking and activating” enzyme activity was particularly important for decreasing the potential toxicity and side effects of nanozymes on normal tissues and has potential to realize active, controllable, and disease-loci-specific nanozyme catalytic behavior. Taking advantage of this US-switchable enzyme activity, outstanding accumulation in infection sites, as well as excellent biocompatibility, the Pd@Pt-T790-based SDT nanosystem was successfully applied to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced myositis, and the sonodynamic therapeutic progression was noninvasively monitored by photoacoustic imaging and magnetic resonance imaging. The developed US-switchable nanoenzyme system provides a promising strategy for augmenting sonodynamic eradication of deep-seated bacterial infection actively, controllably, and precisely.
We succeeded recently in developing a series of new pathways to polymeric micelles and hollow spheres via intermolecular specific interactions. A new micellization mechanism of block copolymers was realized by using the specific interaction between a low molecular weight compound and one of the blocks in low-polarity solvents. Many more successes have been achieved by our "block copolymer-free" strategies. We are now able to use homopolymers, random copolymers, oligomers, etc. as building blocks to construct noncovalently connected micelles (NCCM), in which the core and shell are connected by hydrogen bonding. Some of such NCCMs are readily converted further into hollow spheres by cross-linking the shell and then switching the medium to one that dissolves the core. Rigid polymer chains and their complementary homopolymers can directly assemble into large hollow spheres thanks to the propensity to parallel packing of the rigid chains. In addition, some of the NCCMs show perfect stimuli-responsive properties. pH-dependent micellization and pH-dependent micelle-hollow-sphere transition are realized in water-soluble graft copolymers driven by complexation and decomplexation between the main chain and grafts.
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
BackgroundHypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) are frequently overexpressed in numerous types of cancers and are known to be important regulators of angiogenesis. Until now, few studies have been carried out to investigate the prognostic role of these factors in solid tumors, especially in colorectal cancer (CRC). The purpose of this study was to evaluate the expression of HIF-1α and VEGF in CRC tissues, and to analyze the association of these two factors with several clinical and pathological characteristics, and patients' survival.MethodsParaffin-embedded tissue samples were retrospectively collected from 71 CRC patients, who received surgical resection between 2001 and 2002, with a median follow-up of 5 years. We examined the patterns of expression of HIF-1α and VEGF by immunohistochemistry method. Statistical analysis was performed with univariate tests and multivariate Cox proportional hazards model to evaluate the differences.ResultsExpression of HIF-1α and VEGF was positively observed in 54.93% and 56.34% among the patients, respectively. HIF-1α and VEGF status were significantly associated with tumor stage, lymph nodes and liver metastases (P < 0.05). Expression of both HIF-1α and VEGF remained significantly associated with overall survival (OS) (P < 0.01), and HIF-1α was positively correlative to VEGF in CRC (r = 0.72, P < 0.001).ConclusionsHIF-1α and VEGF could be used as biomarkers indicating tumors in advanced stage and independently implied poor prognosis in patients with CRC. Treatment that inhibits HIF-1α might be a promising targeted approach in CRC to exhibit its potential to improve outcomes in future perspective, just as VEGF targeting has proved to be.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.