Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na[211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-[211At]astatobenzoate NHS ester, [211At]1c-Fab', and (separately) with p-[125I]iodobenzoate NHS ester, [125I]1b-Fab'. An evaluation in athymic mice demonstrated that [211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of [125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than [211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' ([125I]2-Fab'/ [211At]2-Fab') and the bis-nido-carborane (VFC) ([125I]3-Fab'/[211At]3-Fab') had very different in vivo distributions than the control [125I]1b-Fab'. Biodistributions of closo-decaborate(2-) conjugates ([125I]4-Fab'/[211At]4-Fab', [125I]6-Fab'/[211At]6-Fab', and [125I]7-Fab'/[211At]7-Fab') demonstrated that they were stable to in vivo deastatination and had distributions similar to that of the control [125I]1b-Fab'. In contrast, a benzyl-modified closo-decaborate(2-) derivative evaluated in vivo ([125I]5-Fab'/[211At]5-Fab') had a very different tissue distribution from the control. This study has shown that astatinated protein conjugates of closo-decaborate(2-) are quite stable to in vivo deastatination and that some derivatives have little effect on the distribution of Fab'. Additionally, direct 211At labeling of Fab' conjugated with closo-decaborate(2-) derivatives provide very high (e.g., 58-75%) radiochemical yields. However, in vivo data also indicate that the closo-decaborate(2-) may cause some retention of radioactivity in the liver. Studies to optimize the closo-decaborate(2-) conjugates for protein labeling are underway.
An investigation has been conducted to assess the in vivo stability of a series of astatinated benzamides and astatinated nido-carborane compounds in mice. It was hypothesized that the higher bond strength of boron-astatine bonds in the nido-carboranes might provide increased stability toward in vivo deastatination. Four tri-n-butylstannylbenzamides were prepared for radiohalogenation and evaluation in vivo. Those compounds were N-propyl-4-(tri-n-butylstannyl)benzamide 1a, N-propyl-3-(tri-n-butylstannyl)benzamide 2a, ethyl 4-tri-n-butylstannylhippurate 3a, and 4-tri-n-butylstannyl-hippuric acid 4a. Seven mono-nido-carboranyl derivatives were prepared for radiohalogenation and in vivo evaluation. Four of the seven mono-carboranyl derivatives (5a, 6a, 7a, 13a) contained a 3-(nido-carboranyl)propionamide functionality, and the remaining compounds (8a, 8g, 10a) contained a 4-(nido-carboranyl)aniline functionality. Two additional derivatives (11a, 12a) were prepared that contained bis-(nido-carboranylmethyl)benzene moieties (also referred to as Venus flytrap complexes (VFCs). All benzamide and nido-carborane compounds underwent facile iodination and radiohalogenation, except a 4-(nido-carboranyl)aniline derivative, 8a. Iodination of 8a resulted in a mixture, of which the desired iodinated product was a minor component. Therefore, radiohalogenation was not attempted. It is believed that the mixture of products is due to the presence of a thiourea bond. Previous studies have shown that thiourea bonds can interfere with halogenation reactions. In vivo comparisons of the compounds were conducted by co-injection of dual labeled (125/131I and 211At) compounds. Tissue distribution data were obtained at 1 and 4 h postinjection of the radiolabeled compounds, as that was sufficient to determine if astatine was being released. Stability of the astatinated compound was assessed by the difference in concentration of radioiodine and astatine in lung and spleen. All of the benzamides were found to undergo rapid deastatination in vivo. The nido-carborane derivatives appeared to be slightly more stable to in vivo deastatination; however, they had long blood residence times. The surprising finding was that the VFC derivatives did not release 211At in vivo, even though they rapidly localized to liver. This finding provides encouragement that stable conjugates of 211At may be attained if appropriate modifications of the VFC can be made to redirect their excretion through the renal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.