A radar-based climatology of 91 unique summertime (May 2000-August 2009) thunderstorm cases was examined over the Indianapolis, Indiana, urban area. The study hypothesis is that urban regions alter the intensity and composition/structure of approaching thunderstorms because of land surface heterogeneity. Storm characteristics were studied over the Indianapolis region and four peripheral rural counties approximately 120 km away from the urban center. Using radar imagery, the time of event, changes in storm structure (splitting, initiation, intensification, and dissipation), synoptic setting, orientation, and motion were studied. It was found that more than 60% of storms changed structure over the Indianapolis area as compared with only 25% over the rural regions. Furthermore, daytime convection was most likely to be affected, with 71% of storms changing structure as compared with only 42% at night. Analysis of radar imagery indicated that storms split closer to the upwind urban region and merge again downwind. Thus, a larger portion of small storms (50-200 km 2 ) and large storms (.1500 km 2 ) were found downwind of the urban region, whereas midsized storms (200-1500 km) dominated the upwind region. A case study of a typical storm on 13 June 2005 was examined using available observations and the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), version 3.7.2. Two simulations were performed with and without the urban land use/Indianapolis region in the fourth domain (1.33-km resolution). The storm of interest could not be simulated without the urban area. Results indicate that removing the Indianapolis urban region caused distinct differences in the regional convergence and convection as well as in simulated base reflectivity, surface energy balance (through sensible heat flux, latent heat flux, and virtual potential temperature changes), and boundary layer structure. Study results indicate that the urban area has a strong climatological influence on regional thunderstorms.
Effects of chelating agents on the catalytic degradation of bisphenol A (BPA) was studied in the presence of BiFeO3 nanoparticles as a heterogeneous catalyst and H2O2 as a green oxidant. The oxidizing ability of H2O2 in the presence of nano-BiFeO3 alone was not so strong to degrade BPA at neutral pH values, due to the limited catalytic ability of nano-BiFeO3. Once the surface of nano-BiFeO3 was in situ modified by adding proper organic ligands, the BPA degradation was much accelerated in the pH range of 5–9. The enhancing effect of the ligand was observed to have an order of blank < tartaric acid < formic acid < glycine < nitrilotriacetic acid < ethylenediaminetetraacetic acid (EDTA). The addition of 0.25 mmol L–1 EDTA in the H2O2–BiFeO3 system at pH 5.0 and 30 °C increased the BPA removal from 20.4% to 91.2% with reaction time of 120 min. The enhancing effect of the ligand was found to be indifferent of the possible dissolution of iron from nano-BiFeO3, but correlated well with the accelerated •OH formation from the H2O2 decomposition at the BiFeO3 surface, which was confirmed by ESR measurements and density functional theory studies. In general, more addition of EDTA, higher H2O2 concentrations, or higher temperatures were favorable to the BPA degradation. The effect of the EDTA addition on the kinetics of BPA degradation was also clarified.
[1] India has one of the most intensive and spatially extensive irrigation systems in the world developed during the1960s under the agricultural Green Revolution (GR). Irrigated landscapes can alter the regional surface energy balance and its associated temperature, humidity, and climate features. The main objective of this study is to determine the impacts of increased irrigation on long-term temperature trends. An analysis of the monthly climatological surface data sets at the regional level over India showed that agriculture and irrigation can substantially reduce the air temperature over different regions during the growing season. The processes associated with agriculture and irrigation-induced feedback are further diagnosed using a column radiation-boundary layer model coupled to a detailed land surface/hydrology scheme, and 3-D simulations using a Regional Atmospheric Modeling System. Both the modeling and observational analysis provide evidence that during the growing season, irrigation and agricultural activity are significantly modulating the surface temperatures over the Indian subcontinent. Therefore irrigation and agricultural impacts, along with land use change, and aerosol feedbacks need to be considered in regional and global modeling studies for climate change assessments.
The sensitivity and linearity are critical parameters that can preserve the high pressure‐resolution across a wide range and simplify the signal processing process of flexible tactile sensors. Although extensive micro‐structured dielectrics have been explored to improve the sensitivity of capacitive sensors, the attenuation of sensitivity with increasing pressure is yet to be fully resolved. Herein, a novel dielectric layer based on the gradient micro‐dome architecture (GDA) is presented to simultaneously realize the high sensitivity and ultrabroad linearity range of capacitive sensors. The gradient micro‐dome pixels with rationally collocated amount and height can effectively regulate the contact area and hence enable the linear variation in effective dielectric constant of the GDA dielectric layer under varying pressures. With systematical optimization, the sensor exhibits the high sensitivity of 0.065 kPa−1 in an ultrabroad linearity range up to 1700 kPa, which is first reported. Based on the excellent sensitivity and linearity, the high pressure‐resolution can be preserved across the full scale of pressure spectrum. Therefore, potential applications such as all‐round physiological signal detection in diverse scenarios, control instruction transmission with combinatorial force inputs, and convenient Morse code communication with non‐overlapping capacitance signals are successfully demonstrated through a single sensor device.
Abstract. We investigate whether explicit representation of the urban land surface improves the simulation of the recordbreaking 24-h heavy rain event that occurred over Mumbai, India on 26 July 2005 as the event has been poorly simulated by operational weather forecasting models. We conducted experiments using the Regional Atmosphere modeling system (RAMS 4.3), coupled with and without explicit urban energy balance model-town energy budget (TEB) to study the role of urban land -atmosphere interactions in modulating the heavy rain event over the Indian monsoon region. The impact of including an explicit urban energy balance on surface thermodynamic, boundary layer, and circulation changes are analyzed. The results indicate that even for this synoptically active rainfall event, the vertical wind and precipitation are significantly influenced by heterogeneity in surface temperatures due to urbanization, and the effect is more significant during the storm initiation. Interestingly, precipitation in the upwind region of Mumbai city is increased in the simulation, possibly as a feedback from the sea breeze -urban landscape convergence. We find that even with the active monsoon, the representation of urbanization contributes to local heavy precipitation and mesoscale precipitation distribution over the Indian monsoon region. Additional experiments within a statistical dynamical framework show that an urban model by itself is not the dominant factor for the enhanced rainfall for a Mumbai heavy rain event; the combination of updated SST fields using Tropical Rainfall Measurement Mission (TRMM) data with the detailed representation of urban effects simulated by the TEB model created realistic gradients that successfully maintained the Correspondence to: D. Niyogi (climate@purdue.edu) convergence zone over Mumbai. Further research will require more detailed morphology data for simulating weather events in such urban regions. The results suggest that urbanization can significantly contribute to extremes in monsoonal rain events that have been reported to be on the rise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.